

General Discussion $)^{-}$

- Medium as Filter
- Antenna Size
- Measurement Required
- Channel Models

Propagation Basics

- When electrons moves, they create EM field is created
- By attaching an effective antenna, we can transmit this radiation to space
- Noise

Basics (1)

- VLF , LF and MF bands
- The waves propagate in form of Ground waves
- Example AM
- How ever, at HF the radio waves are not effective (Reason)

Mobile Radio Propagation

- For higher frequency (HF) we use ionosphere reflection (Sky wave)
- Give rise to fading
- For VHF
- Uses LOS
- Fading via reflected waves

Antenna Basics

- Free Space Propagation Model

- Free space propagation model is used to predict received signal strength when the transmitter and receiver have clear LOS. Satellite communication and Microwave communication (LOS) uses free space propagation typically.
- Predicts that received power decays as a direct function of T-R separation distance .(raised to some power)
- $\mathrm{Pt}=\frac{P_{t} G_{1} G_{2} \lambda^{2}}{(4 \pi)^{2} d^{2} L} \cdots \cdots$ Friis Free Space Equation

..Friis Free Space Equation..

- $\mathrm{P}_{\mathrm{t}}=$ Transmitted power
- $\mathrm{G}_{\mathrm{t}}=$ Transmitter Antenna Gain
- $\mathrm{G}_{\mathrm{r}}=$ Receiver Antenna Gain

$$
\mathrm{G}=\frac{4 \pi A e}{\lambda^{2}}
$$

- $\mathrm{D}=$ Separation Distance
- L= System Loss Factor (due to remission line loses, antenna losses, filter losses)

Antenna Basics

- Ae is Antenna Aperture and is related physical size of antenna .
- Gain increases as frequency increase
- Isotropic Antenna : An hypothetical antenna , that radiates in all direction
- Effective Isotropic Radiated Power is EIRP $=\mathrm{PtGt}$
- Effective Radiated Power : is radiated power in comparisons to half wave dipole antenna. (Gain 16.4 or 2.15 db)
- ERP=EIRP-2.15dB

Antenna Basics

- Antenna gains are also given in Dbi
- Path Loss Represents attenuation as positive quantity and is measured in dB
- $\operatorname{PL}(\mathrm{db})=10 \log (\operatorname{Pt} / \operatorname{Pr})$ or $-10 \log \left(\frac{G_{1} G_{2} \lambda^{2}}{(4 \pi)^{2} d^{2}}\right)$
- Friss Free Space model is only valid In far filed region $d_{f}=2 D^{2} / \lambda$
- Where D is largest physical Dimension of antenna

Antenna Basics

- Friss Free Space Equation does not hold for $\mathrm{d}=0$
- So we use a close in distance do as as Received Power reference point
- The received power is now given as

$$
\operatorname{Pr}(\mathrm{d})=\operatorname{Pr}(\mathrm{do})\left(\frac{(d o)}{d}\right)^{2} \text { or }
$$

- $\left.\operatorname{Pr}(\mathrm{d}) \mathrm{dBm}=10 \log \left(\frac{\operatorname{Pr}(d o)}{0.001 W}\right)+20 \log \frac{(d o)}{d}\right)$
- What will be the far field distance for a BS with
- Largest antenna $\mathrm{D}=0.5 \mathrm{~m}$
- F1 $=900 \mathrm{Mhz}$
- $\mathrm{F} 2=1800 \mathrm{MHz}$
- For 900 MHz
$\lambda=\left(3 \times 10^{8} / 900 \times 10^{6}\right)=0.33 \mathrm{~m} \quad d_{f}=\frac{2 D^{2}}{\lambda}=\frac{2(0.5)^{2}}{(0.33)}=1.5 \mathrm{~m}$
- For $1,800 \mathrm{MHz}$
$\lambda=\left(3 \times 10^{4} / 1800 \times 10^{6}\right)=0.17 \mathrm{~m} \quad d_{f}=\frac{2 D^{2}}{\lambda}=\frac{2(0.5)^{2}}{(0.17)}=3.0 \mathrm{~m}$

Reflection

- Occurs, when EM wave hits an object which has very large dimension as compared to wavelength .

Diffraction

- Behavior of EM waves, when EM faces a obstacle
- Wrap Up Behavior
- Explain how signals can travel in urban and rural areas environment without LOS

Scattering

- Occurs when medium through which waves travel has small obstacles (as compared to wavelength)

Reflection from Dielectric

The plane of incidence : Can be defined as plane containing the incident m reflected and transmitted rays .

- The dielectric constant of a perfect dielectric e is given as $\boldsymbol{\epsilon}=\boldsymbol{\epsilon}_{o} \epsilon_{r}$
- Where $\boldsymbol{\epsilon}_{o}$ is constant and its value is given as 8.85×10^{-12} and ϵ_{r} is relative value of permittivity
- If dielectric is lossy , it will absorb some energy and some will be reflected .

$$
\epsilon=\epsilon_{o} \epsilon_{r-J} \epsilon^{\prime}
$$

Where $\epsilon^{\prime}=\sigma / 2^{*} \mathrm{Pi}^{*} * \mathrm{f}$ $\mathrm{I}_{1}=\frac{E_{2}}{E_{1}}=\frac{\eta_{2} \sin \theta_{r}-\eta_{2} \sin \theta_{2}}{\eta_{2} \sin \theta_{r}+\eta_{1} \sin \theta_{1}}$ (E field in plane of incidence) $\mathrm{r}_{1}=\frac{E_{2}}{E_{5}}=\frac{\eta_{1} \sin \theta_{1}-\eta_{1} \sin \theta_{1} \sin \theta_{t}+\eta_{1} \sin \theta_{1}}{\eta_{1}}$ (E ficld normal to planc of incidence)

Remember

- Statistical models fail after 10 GHz , For frequency above 10 Ghz , we use deterministic models .(like ray tracing)

Reflection from Conductors

- EM energy cannot pass through perfect conductors.
- All the energy is reflected back
- So
- $\theta \mathrm{i}=\theta \mathrm{r}$
- Ei=Er (E field in Plane of incidence)
- $\mathrm{Ei}=-\mathrm{Er}$ (E field normal to Plane of incidence)
- $\Gamma_{\perp}=1$
- $\quad \Gamma \|=-1$

Ground Reflection Model

- Reflection to ground
- Normally and strongest when we have LOS
- A two ray ground reflection model is used
- The model is reasonably accurate for predicting large scale signal strength over several Kilometers .
- Assumption : he height of Antenna >50 meters

Ground Reflection Model

- Now we can easily Compute phase difference and time difference
$\theta \Delta=2 \pi \Delta / \lambda$
$\tau_{\mathrm{d}}=\Delta / \mathrm{c}=\theta \Delta / 2 \pi \mathrm{fc}$

As the distance increase, the distance between the d' and d" becomes small
Ptotal $=\frac{2 E \cdot d \cdot 2 \pi h t h r}{d\left(\lambda d^{2}\right)}$

Diffraction

- Obstruction occurred at sharp edges.
- Explains, why we can use mobile communication without LOS
- Phenomena : Huygen Principle : All points, on a wave front can be considered as point sources for the production of secondary wavelets.
- Causes, propagation of secondary wavelets in to shadowed regions .

Knife Edge Diffraction Model

Diffraction Gain

- The Fresnel Kirchhoff Diffraction diffraction is given by $\mathrm{v}=\mathrm{h}$
$\sqrt{\frac{2(d 1+d 2)}{(\text { lambda }) * d 1 * d 2}}$
- Book Page 131

Multiple Knife Edge Diffraction Model

Scattering

- Causes the energy t be radiated in many direction
- Eg. Follage , boards

0 O
©

랑
y yen
©

