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Amplitudes=[C0;Cn]
Angles=Dnangles (1:M) ;
Angles=Angles* (180/pi);
disp(’Amplitudes Angles’)
[Amplitudes Angles]

% To Plot the Fourier coefficients
k=0:length (Amplitudes)-1; k=k';
subplot (211), stem(k, Amplitudes)
subplot (212),stem(k, Angles)

ans =

Amplitudes Angles
0.5043 0

0.2446 -75.9622
0.1251 ~82.8719
0.0837 -85.2317
0.0629 -86.4175
0.0503 -87.1299
0.0419 -87.6048
0.0359 -87.9437
0.0314 -88.1977
0.0279 -88.3949
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2.1-1 Find the energies of the signals shown in Fig. P2.1-1. Comment on the effect on energy of sign
change, time shifting or doubling of the signal. What is the effect on the energy if the signal is
multiplied by £?
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Figure P2.1-1
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2.1-2 (a) P:ind E, and E,, the energies of the signals x(¢) and y(¢) shown in Fig. P2.1-2a. Sketch the
signals x(t) 4+ y(¢t) and x(¢) — y(¢) and show that the energies of either of these two signals
are equal to E; + E,. Repeat the procedure for the signal pair of Fig. P2.1-2b.

(b) Repeat the procedure for the signal pair of Fig. P2.1-2c. Are the energies of the signals
x(t) + y(t) and x(¢) — y(¢) identical in this case?
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Figure P2,1-2

2.1-3 Redo Examp}e 2.2ato find the power of a siﬁusoid C cos (wot +0) by averaging the signal energy
over one period 27 /ey (rather than averaging over the infinitely large interval).

2.1-4 Shozw that2 if ; = w,, the power of g(i) = Ci cos (wit + 61) + C, cos (wyt + 6) is
[Ci* + C2* +2C1C, cos (6, — 6,)1/2, which is not equal to (C;2 + C,2)/2.

2.1-5 Find the power of the periodic signal g(¢) shown in Fig. P2.1-5. Find also the powers and the rms
values of: (a) —g(z); (b) 2g(¢); (¢) cg(t). Comment.
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Figure P2.1-5

2.1-6 Find the power and the rms value for the signals in: (a) Fi ; i i
‘ : g. 2.21b; (b) Fig. 2.22a; (c) Fig. 2.23;
(d) Fig. P2.8-4a; (e) Fig. P2.8-4c. ¢ ©re

2.1-7 Show that the power of a signal g(¢) given by

g =) D/  w #w forall i £k

k=m
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is (Parseval’s theorem)

Py=) D

k=m

2.1-8 Determine the power and the rms value for each of the following signals:
4 4 . T
(@ 10 cos (100 + 7 ) (b) 10 cos (100¢ + T) +16 sin (1500 + Z)

5
(¢) (10 + 2 sin37) cos 10¢ (d) 10 cos 5¢ cos 10z
(&) 10 sin 5¢ cos 10z ® e’ coswyt

2.2-1 Show that an exponential e~ starting at —oc is neither an energy nor a power signal for any real
value of a. However, if a is imaginary, it is a power signal with power P, = 1 regardless of thg
value of a.

2.3-1 InFig. P2.3-1, the signal g;(f) = g(—¢). Express signals gz({), g.3(t), g4(1), @d gs(®) ?n terms
of signals g(#), g1(#), and their time-shifted, time-scaled, or mr}e-‘lnverted versions. For instance
2@ =g —T)+ gt —T) for some suitable value of T. Similarly, both g3(¢) and g4(¢) can
be expressed as g(z — T) + g(¢ + T') for some suitable value of 7. gs(¢) ca'm be expressed as g(@®
time-shifted, time-scaled, and then multiplied by a constant. (These operations may be performed
in any order).
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Figure P2.3-1

2.3-2 For the signal g(#) shown in Fig. P2.3-2, sketch the signals: (a) g(—1); (b) g(t +6); (¢) g 31); @
g(6—1).
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Figure P2.3-2
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2.3-3 For the signal g(z) shown in Fig. P2.3-3, sketch: (a) g(r — 4); (b) g(¢/1.5); (¢) gt —4) d)
§(2—1) . Hint: Recall that replacing ¢ with # — T delays the signal by 7'. Thus, g2t —4)is g(2r)
with 7 replaced by ¢ — 2. Similarly, g(2 — ¢) is g(—t) with ¢ replaced byt —2.

g(1)

-4 -0 2 t—o

Figure P2.3-3

2.3-4 For an energy signal g(z) with enér‘gy E,, show that the energy of any one of the signals
—g(), g(—1t), and g(¢t — T) is E,. Show also that the energy of g(at) as well as g(at — b)
is Eg/a. This shows that time inversion and time shifting do not affect signal energy. On the other
hand, time compression of a signal by a factor a reduces the energy by the factor a. What is the

effect on signal energy if the signal is: (a) time-expanded by a factor a (¢ > 1); (b) multiplied by
a constant a?

2.4-1 Simplify the following expressions:

sin ¢ - jo+2
@ (33)0 o (Fs)e
© [e cos (3 — 60°)]8(r) @ [P,
C € " CoSs [tZ—H——:I —_ )
1 sin ko
(e) (jw—l-z) 8(w+3) ® ( > )5(60)

Hint: Use Eq. (2.18). For part (f) use L’Hopital’s rule.
2.4-2 Evaluate the following integrals:
(o) o0
@ [ s@s- o ® [ swgt vy ar
—0 —0o0
oo . o
(c)/ 3@)e " dt (d)[ 8(t —2)sin me dt
—00 —c0

e f ” 8@t +3)e dt ® f oo(z3 +48(1 —1) dt

(g)foo 82 -8B -1 dt (h)foo e“ D cos %(x —5)8(x —3)dx

Hint: §(x) is located at x = 0. For example, §(1 — ) is located at 1 — ¢ = 0; thatis, at ¢ = 1, and
SO On.

2:4-3 Prove that

8(at) = i(S(t)
lal
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Hence, show that

Sw) = %B(f) where w=2xnf

Hint. Show that
hat 1
¢t)s(at) dt = —¢(0)
—00 lal
2.5-1 Derive Eq. (2.26) in an alternate way by observing that e = (g — ¢x), and
le|? =(g—cx)-(g—cx)=Ig|* + *Ix|* — 2cg - x

2.5-2 For the signals g(¢) and x(¢) shown in Fig. P2.5-2, find the compc‘)nenF of the form x(¢) contair:leld

. in g(z). In other words, find the optimum value of c in the approximation g(¢) & cx(¢) so that e

error signal energy is minimum. What is the error signal energy?
x(t)

t—>
@ ®)
Figure P2.5-2

2.5-3 For the signals g(¢) and x(¢) shown in Fig. P2.5-2, find the comp(?nenF of the form g(¢) contair:;:ld‘
- in x(¢). In other words, find the optimum value of ¢ in the approximation x (¢) ~ cg(¢) so that the
error signal energy is minimum. What is the error signal energy?

2.5-4 Repeat Prob. 2.5-2 if x(z) is the sinusoid pulse shown in Fig. P2.5-4.

x(t)
11 sin 2wt
‘ \-/l t —>
Figure P2.5-4

2.5-5 Energies of the two energy signals x(¢) and y(¢) are E; and E,, respectively.

(a) If x(¢) and y(¢) are orthogonal, then show that the energy of the signal x(¢) + y(z) is identical
_to the energy of the signal x(¢) — y(t), and is given by E; + E,.

(b) If x(¢) and y(¢) are orthogenal, find the energies of signals ¢;x(t) +c,y(¢) and ¢1x(?) —cy(1). E ;

(¢) We define E,,, the cross energy of the two energy signals x(z) and (1), as

Exy = / x(t)y*(t) dt

—00
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If z(¢) = x(z) £ y(¢), then show that
Ez = Ex + Ey + (Exy + ny)
2.5-6 Let x;(z) and 562 (¢) be two unit energy siérnals orthogonal over an interval from ¢ = # to £,. We

can represent x; (#) and x,(z) by two unit length, orthogonal vectors (x;, x,). Consider a signal
g(t) where

8() = c1x1(t) + ¢3x2(2) n<t=<t

This signal can be represented as a vector g by a point (¢, ¢,) in the x;—x, plane.

(a) Determine the vector representation of the following six signals in this two-dimensional vector

space:
D) g1(0) =2x1(6) — % (t) () g(1) = —x1(1) + 2x2(2)
(i) g3(t) = —x,(r) ) () = x(@) + 2x0(2)
() g5(t) =2x1(t) + x2(2) (D) g () =3x(0)

(b) Point out pairs of mutually orthogonal vectors among these six vectors. Verify that the pairs
of signals corresponding to these orthogonal vectors ate also orthogonal.

2.6-1 Find the correlation coefficient ¢, of signal x(¢) and each of the four pulses g1(), g2(8), g3(0),
and g4(¢) shown in Fig. P2.6-1. Which pair of pulses would you select for a binary communication
in order to provide maximum margin against the noise along the transmission path?

x(2) (a) g,(0 (b) £,(0) (c)

sin 2w ¢ 1 /\ sin 4m ¢ LN . “/’\—smzm
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Figure P2.6-1

2.8-1 (a) Sketch the signal g(¢) = #2 and find the trigonometric Fourier series to represent g(t) overthe
interval (<1, 1). Sketch the Fourier series ¢(¢) for all values of 7.

(b) Verify Parseval’s theorem [Eq. (2.90)] for this case, given that
o0
1 7.[4

nt = 90

n=1
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2.8-3 If a periodic signal satisfies certain symmetry conditions, the evaluation of the Fourier series

] . . ; : the .
2.8-2 (a) Sketch the signal g(#) = 7 and find the trigonometric Fourier series to represent §(t) over ) ¢ components is somewhat simplified. Show that:

interval (—7, ). Sketch the Fourier series ¢(f) for all values of ¢.

(b) Verify Parseval’s theorem [Eq. (2.90)] for this case given that (a) If g(r) = g(—1) (even symmetry), then all the sine terms in the Fourier series vanish (b, = 0).
€11 . . > &
Y 0 2 , (b) If g(t) = —g(—#) (odd symmetry), then the dc and all the cosine terms in the Fourier series
Z'lz=ﬂ— , o vanish (a = a, = 0). :
n=1 n 6 ‘

Further, show that in each case the Fourier coefficients can be evaluated by integrating
the periodic signal over the half-cycle only. This is because the entire information of one cycle
is implicit in a half-cycle due to symmetry. Hint: If g,(t) and g,(¢) are even and odd fanctions,
1 respectively, of ¢, then (assuming no impulse or its derivative at the origin)

/a 8.(t) dt=2/agg(t) dt and /a 2,(1)dt =0
_ 0 —-

a a

(@)

» ‘ Also the product of an even and an odd function is an odd function, the product of two odd functions is
1+ ' an even function, and the product of two even functions is an even function.

2.8-4 For each of the periodic signals shown in Fig. P2.8-4, find the compact trigonometric Fourier
series and sketch the amplitude and phase spectra. If either the sine or the cosine terms are absent

1 |__l I—— . in the Fourier series, explain why.
B L
- T

om Y. T 10m 208 t—* s 2.8-5 (a) Show that an arbitrary function g(#) can be expressed as a sum of an even function g, (f) and
- an odd function g, (z):

8(1) = g.(t) + g,(2)

W/ o
1 1
| 7 | , , © 8() = 5lg(®) + 8(=Dl+ Sle(®) — g(=1)]

-8 —6m —4n -2n 0 2% 4r 6n 8 t—>

g (1) 8o(®)

(b) Determine the odd and even components of the functions: (i) u(¢); (i) e~*u(t); (iii) e’’.
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Figure P2.8-6
Figure P2.8-4
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2.8-6 If the two halves of one period of a periodic signal are of identical shape except that one is the
negative of the other, the periodic signal is said to have a half-wave symmetry. If a periodic signal
g(#) with a period T, satisfies the half-wave symmetry condition, then

8 (t - %) =—g@®)

In this case, show that all the even-numbered harmonics vanish, and that the odd-numbered
harmonic coefficients are given by

4 To/2 4 To/2
a, = —-.f g(t)cos nwpt dt and b, = —f g(t) sin nwot dt
To Jo To Jo

Using these results, find the Fourier series for the periodic signals in Fig. P2.8-6.

2.9-1 For each of the periodic signals in Fig. P2.8-4, find exponential Fourier series and sketch the
corresponding spectra.

2.9-2 A periodic signal g(t) is expressed by the following Fourier series:
‘ 2 21
g(®) =3cos t +cos <5t - %) + 2cos (8¢ + ——3—)
(a) Sketch the amplitude and phase spectra for the trigonometric series.

(b) By inspection of spectra in part (a), sketch the exponential Fourier series spectra.
(c¢) By inspection of spectra in part (b), write the exponential Fourier series for g(z). P

2.9-3 Figure P2.9-3 shows the trigonometric Fourier spectra of a periodic signal g(z).

(a) By inspection of Fig. P2.9-3, find the trigonometric Fourier series representing g{t).

(b) By inspection of Fig. P2.9-3, sketch the exponential Fourier spectra of g(¢).

(c) By inspection of the exponential Fourier spectra obtained in part (b), find the exponential
Fourier series for g(z). -

(d) Show that the series found in parts (a) and (c) are equivalent.

Figure P2.9-3

2.9-4 Show that the coefficients of the exponential Fourier series of an even periodic signal are real and
those of an odd periodic signal are imaginary.

ANALYSIS AND
TRANSMISSION OF

U7 SIGNALS

lectrical engineers instinctively think of signals in terms of their frequency spectra and

tbink of systems in terms of their frequency responses. Even teenagers know about audio

signals having a bandwidth of 20 kHz and good-quality loud speakers responding up
to 20 kHz. This is basically thinking in the frequency domain. In the last chapter we discussed
spectral representation of periodic signals (Fourier series). In this chapter we extend this
spectral representation to aperiodic signals.

3.1 APERIODIC SIGNAL REPRESENTATION BY FOURIER INTEGRAL

App?ying a limiting process, we now show that an aperiodic signal can be expressed as a
continuous sum (integral) of everlasting exponentials. To represent an aperiodic signal g(z),
suc.h as the one shown in Fig. 3.1a by everlasting exponential signals, let us construct a new
pc?nodic signal gr, (t) formed by repeating the signal g(z) every T, seconds, as shown in
Fig. 3.11?. The period Tj is made long enough to avoid overlap between the repeating pulses.
The periodic signal gr,(#) can be represented by an exponential Fourier series. If we let
To — oo, the pulses in the periodic signal repeat after an infinite interval, and therefore

Tlim 8n(t) = g(t)
00—

Thus, the_Fourier series representing gz, () will also represent g(¢) in the limit T — oo. The
exponential Fourier series for g7, (¢) is given by

[e <]
85,(t) = Y Dyeln G.1)
n=—00
in which
p 1 [P .
= — t e—]nwot dt
"= Ty Jgy 00X (3.2a)

71



Chapter 2

”

2.1-1 Let us denote the signal in question by g(t) and its energy by E,. For parts (a) and (b)

2= 1 27 1 2w
E, = sintdt = = dt - = cosAdt=n+0=m
/] 2 [+] 2 1]

4w 1 4 4
(c) E,,:-./ sin"di:-—/ dt — - cos AAdt=n+0=7
2 2 2n 24

2 1 2 1 2
(d) Ey = / (2sin 1)? dt =4 [-,;/ dt — ;,-/ cos 2t dt] =47 +0]=4r
0 0 0

.

Sign change and time shift do not affect the signal energy. Doubling the signal quadruples its energy. In the
same way we can show that the energy of kg(t) is kK2E,.

2.1-2 (a) Ee= [C)%r =2 Ey= [f(1)%dt+ [(-1)%de=2

1 2
E,ﬂ,=/ (2)°dt = 4. Ex-y / (25%dr = 4
0 1

Therefore Ez3, = E- -~ E,.

2 2r w2 - An,2 ) 2=
(b)E, = / (l)zdfﬁ-/ (~=1)%dt = 2. Ey,= / (1)2d1+/ (—])’dr-_t-/ (1)‘d1+/ 1-1)%t = 2x
Jo b ) Jwf2 -t JAni2

n/2 In/2 2%
Ez,,=/ (2)7dr+/ (0)’dr+/ (-1)%dt = 4r
0 "2 3m/2

Similaily. we can show that E._, = 47 Therefore Ex:, = E. + E,. We are tempted to conclude that L3y =
E. - E, in general. Let us see.

re/d ” ”
(c) 1-:,=j (1)2dr.+/ (-1)%dt == £,=/ (Nt ==
0 ” [+]

/4

n/4 Bl ~/4 ”
Eivy =/ (2)°dt +/ (0Pdt =7 Es-, =/ (0)%at +/ (=2)3dt = 3n
[<] n/4 [+] /4

Therefore. in general Ex+y # Ez + E,

2.1-3
1 To 2 2 c? To
= o ’ t+0)dt = — 2wot + 28)] dt
Py To/o C* cos*{wot + ) d T J, {1 + cos (2wot + 26)]
C'I To To . C2 _ C?
=7 [/o dt -t-L cos (2wot + 26) dt| = E-,,—,;[To+0]-— 5

2.1-4 This problem is identical to Example 2.2b. except that w; # wa2. In this case. the third integral in P (see p. 19
is not zero. This integral is given by

aevca [T
Iy = lim 26 ‘/ ¢os (wit + 1) cos (wit + 82) dt

T—

T T/2
T/2 T/2
= lim Q_Q [/ cos{6) — 2) dt +/ cos(2unt + 0y + 62) dt
T—n -T;2 172

CiCy
T—=~n T

[T cos(f) - M)} + 0= C1C2 cos(fy — 62)




Therefore

—8

P, = =% + =% + C1C2cos(by - 62)

lol‘\J
~|Q

2.1-5
] 2 32 1 2 3.2 .
Py= = (17Y2dt = 64/7 (8) Py =~ (—t*)%dt = 64/7
4/, 4/,
1 [? 12
(b) P2y = Z/ (an)zdt = 4(64/7) = 256/7 (€) Peg = Z/ (,,t-")zdt = 64c% /7
-2 -2

Sign change of a signal does not affect its power. Multiplication of a signal by a constant ¢ increases the power
by a factor =

2.1-6 »
_1 T2 g, L L by Yo -
(a) Pg—ﬂA(f‘ )dr-ﬂ/ov dt-—ﬂ[l e 7
1 ” 2 1 n/2
(b) P, =5 / wi(t)dt = — / dt = 0.5
2 f_ . 8 J_ep2
, To/2 To/2
(© Po=gx Wt de == [ a=1
0 J_1¢/2 o J_Tp/2
d) Py= l/ (£1)tdt =1
14/
2n "
1 t\* 1
© P=3 | (21._) dt=3
2.1-7

1 T/ 1 T/2 "™ " (o mwnt
po=jim 3 [ atnatinas jim 7 D 3D 3L

T~ Ti2 =T/2 g=m r=m

The integrals of the cross-product terms (when k # r) are finite because the integrands are periodic signals
(inade up of sinusoids). These terms. when divided by T — oo. vield zero. The remaining terms (k = ) yield

T/I2 n n
_ope 4 2 4, _ 2
P“",JE'LT/ E | Dy " dt = E |Dl

“T/2 k=m k=m

2.1-8 (a) Power of a sinusoid of amplitude C is C?*/2 |Eq. (2.6a)] regardless of its frequency (w # 0) and phase.
Therefore. in this case P = (10)%/2 = 50.
(b) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids |[Eq. (2.6b)]. Therefore, in

this case P = U3 + 08° =178,
(c) (10 + 2 sin 3t) cos 10t = 10cos 10¢ + sin 13t — sin 3t. Hence from Eq. (2.6b) P = Qgﬁ +3+ 3 =350
(d) 10 cos 3t cos 10t = 5(cos 5t + cos 15t. Hence from Eq. (2.6b) P = (—22)-2- + %ﬁ = 23.

(c) 10sin 5tcos 10t = 5(sin 15¢ — sin 5t. Hence from Eq. (2.6b) P = ng + -‘;;ﬁ = 25.
(f) ~°' coswot = % [r-"°*~°>' + eft@==0)t]. Using the result in Prob. 2.1-7. we obtain P = (1/4) +(1/4) = 1/2.

™~ Y
E, = / (™) dt= j e~ dt = 00
-~ -
T/

1 2 1 [T s
P, = lim = N2 = lim = =26t gt = oc
s }T}’“ T /;T/z(r A TIE’“ T ./;1'/'.'( =

For imaginary a. let a = j7. Then

2.2-1 For arealn

y [T ' y (T2
P, =1limra~= / (r”")((’-"t)(h = lim = / dt =1
Y T -T/2 T T Jorr




1

Fig. $2.3-2
Clearly. if o is veal. ¢~ is neither energy not power signal. However. if a is imaginary, it is a power signal with
power 1.

2.3-1
@) =gt —1)+q:(t=1). ga(t)=g(t - D+glt+1), gft)=glt- 0.5) + g1 (t + 0.5)

The signal gs{t) can be obtained by (i) delaying g(f) by 1 second (replace t with t — 1), (ii) then time-expanding
by  factor 2 (replace t with t/2). (iii) then raultiply with 1.5. Thus gs(t) = 1.59(% -1).

2.3.2 All the signals are shown in Fig. 52.3-2.

2.3-3 Al the signals are shown in Fig. 52.3-3

4l 9 ‘\i;l@
2 ' 2 o
-] A & -6 tT™ 3

4§ JE4) 4 gu-v

2 “M

h s t— o e t~

Fig. 82.3-3

2.3-4
I:'..y=/ [—g(:)]’m=/ g*(t)dt = E,. E,(-,,=/ (g(—t))2dz=/ lz)dr = Eg
o - w -t - -
n . R Y L %) 1 e
Ege-m = / ot = T2 dt = / ¢*(r)dr = E;.  Egan = / lo(at)}? dt = = / 9*(z)dz = Eg/0

v ] ~ ", ~J N
Egat-6),= / lgtat — W2 dt = - / g {r)de = Egfe. Egra) = / [,q(t/a)]2 dt = a/ g’(7)dt = aEy

Eag(ey = / [ng(i)]e dt = a=/ ge(f)dt = azﬁ'g
2.4-1 Using the fact that g(7)¢(r) = g(0)d(r). we ha‘vc
(a) 0 (b) §(w) (c) iar) (d) —36(t-1) {e) Zadlw+3) () ké{w) (use L’ Hopital's rule)

2.4-2 In these problems remember that impulse #() is located at z = 0. Thus. an impulse #(t —7) is located at 7 = 1.

and so on.
(a) The impulse is located at v =1 and g(7) at 7 =t is g(t). Therefore

3




2.4-3

2.5-1

2.

2.

(&

5-2

5-3

.5-4

/ a(r)d{t = T)dr =g(t)

(b) The impulse #{7) is at 7 =0 and g(t — 7) at 7 = 0 is g(t). Therefore

‘/-'1- 8(r)g(t — 7)dr = g(t)

-

Using similar arguments. we obtain
(€1 (@0 () (H5 (8)g(-1) (h) ~e?

Letting nt = 7. we aobtain (for a > 0)

f o(tandt = 3 / REICES Lo

bt N

Similarly for a < 0, we show that this integral is —%¢(0). Therefore

o(t)d(at) dt = —&(0) = — o()6(t) dt
L, hian)dt = g8(0) = 17 | o0
Therefore
1.,
b(at) = —48(t
) ] )
Trivial. Take the derivative of {e!? with respect to r and equate it to zero.

(a) In this case E; = [, dt = 1. and

1 mn 1 !
o= E/o g{f}:r(!)dt:;A tdt = 0.5

(b) Thus. g{t} = 0.57(t). and the error e(t)=t~05o0ver (0t < 1). and zero outside this intervai. Also Eg
and E. (the energy of the ervor) are

1 1 1
E,-_-/ 92(f)¢lt=/ t2dt =1/3 and £,=/ (t —0.5)%dt =1/12
0 0 0

The error (t — 0.5) is orthogonal to r(f) because

3
/ (t — 0.5)(1)dt =0
4]

Note that E, = *E. + E.. To explain these results in terms of vector concepts we observe from Fig. 215
that the error vector e is orthogonal to the component X. Because of this orthogonality, the length-square of
g lenergy of g(1)] is equal to the sum of the square of the lengths of cx and e [sumn of the energies of er(t) and

o(n).
In this case E, = [} g(1dt = [J 2 dt = 1/3. and

1 H
c_—__]-/ ;r(t)g(t)df.—.(i/ tdt=15
Ey i} [}

Thus. (t) = 1.5¢(¢). and the error e(t) = (1) — 1.59(t) = 1 ~ 1.5t over (0 < ¢t < 1). and zero outside this
interval. Also E. (the energy of the error) is Ee = fol(l - 1.5t)2dt = 1/4.

(a) In this case E; = [, sin®2rtdt = 0.5, and

1 1
o= —E%;,/o .q(t).'c(f)dt:-o-l.g/0 tsin 2mtdt = ~1/w

(b) Thus. g(t) = —(1/a)x(t). and the error e(t) = t + (1/7)sin 2nt over (0 <t < 1). and zero outside this
interval. Also E, and E. (the cnergy of the error) are

4
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2.5-5

2.5-6

1 1 1
1

Eg= / () dt = / t?dt=1/3 and E. =/ [t - (1/m)sin 2mt]? dt = % - 53

o Jo ° "
The error [t + (1/7)sin 27t} is orthogonal to z(t) because

3
/ sin 2rt(t + (1/7)sin 2xt]dt =0
0

Note that Eg = ¢2E, + E.. To explain these results in terms of vector concepts we observe from Fig. 2.15 that
the error vector e is orthogonal to the component cx. Because of this orthogonality, the length of f [energy of
g{t)] is equal to the sum of the square of the lengths of ¢x and e [sum of the energies of cx(t) and c(t)].

() If 7(t) and u(t) are orthogonal, then we can show the energy of x(t) £ y(t) is Ez + Ey.
/ () £ (O dt = /m jr () dt + jm w(t)®dt £ /~ z()y (1) dt £ / 2" (t)y(t) dt (1)
= [ ot [ o a @

The last result follows from the fact that because of orthogonality, the two integrals of the cross products
+(H)y"(t) and 7°(t)y(r) are zero [see Eq. (2.40)]. Thus the energy of =(t) + w(t) is equal to that of 7(f) - y(t) if
T(t) and n(7) are orthogonal.

(b) Using similar argument. we can show that the energy of c;r(t) + c2y(t) is equal to that of ryz(t) — cay(t) if
2(t) and y{t) are orthogonal. This energy is given by ]c;le,; + |(-2|25y.

(c)lfz(t) =r() = y(#). then it follows from Eq. (1) in the above derivation that

E.=E: + Ev + (E:y + Ey:)

g1(2.-1). g2(-1.2). ga(0.-2). g4(1.2). gs(2.1), and ge(3,0). From Fig. 52.5-6. we sec that pairs (83-86)-
(g:.84) and (g2.8s) are orthogonal. We can verify this also analytically.

'

G ot 3
Co

2

gig. $2.5-8

gr-gs=(0x3)+(-2x0)=0
g ga=(2x1)+(-1x2)=0
g g =(-1x2)+(2x1)=0

We can show that the corresponding signat pairs are also orthogonal.

/ " aa(anr) dt = / " a3 (0] dr = 0

~ -

‘/‘* gi1{t)ga{trdt = /~ [(27i(t) - ra()}[z1 (1) + 2r3(t)}dt =0

~ -

/Q‘ g2(1)gs(t) dt = /" [=x1(t) + 272(1)]{22: (1) + 72(1)]dt = O

- -~

[ |




In deriving these results, we used the fact that f::) 22dt = f_’; r3(t)dt = 1 and f_‘; (t)za{t)dt =0

2.6-1
We shall compute ¢, using Eq. {2.48) for each of the 4 cases. Let us first compute the energies of all the signals.

1
E,=/ sin?2xtdt = 0.5
0

In the same way we find Ey, = E,, = Egy = Eg, = 0.3.
Using Eq. (2.4R), the correlation coefficients for four cases are found as

1 1
1 I . = R e ] f o= —
(1) m ./(; sin 2ntsin dntdt =0 (2) m‘/o (sin 27¢)(~ sin 27t) dt 1

1

1 0.5
i = i tdt — 707sin 2ntdt| = 1.414
(3) m/; 0.707sin 27tdt =0  (4) m [‘/0- 0.707 sin 2ntdt /0.50 sin 27 ] 414/7

Signals r(t) and g2(t) provide the maximum protection against noise.
2.8-1 Here To = 2. so that wp = 27/2 = 7, and

L ¥
gty =ao0+ Za,. cosnnt + by sinnat -1<t<l
n=1
where
1 1 \n 1
1 2, _ 1 2 2 _4(-1 _2 2., _
nO—E/:lidt—-i. n,.=§/_licosmrldf_ e ml b,.—2 -1t sinnntdt =0
Therefore
1 4 = (=1)"
_q(t)=-§+;3£:l py: cosnwt -1<t<1
n=

Figure S2.8-1 shows gi1; = 12 for all f and the corresponding Fourier series representing g(t) over (-1.1).

g tt) , 2
1

Z 3 4 5 1t

;z -

-3 | t=> -3

Fig. S2.8-1

The power of g(t) is

o 2 2 o~ n\ 2 ™
=c? Co _ (1Y 41 e\ 1, 8t 1 8]
Pg—C°+Z_2-—(§) +§Z(1r7n2 _9+1r‘z:n4—9+90~5
1 =l

(b) If the N-term Fourier series is denoted by x(¢). then

n
(nlz) cosnwt -1<t<1

4'V
=53

n=

()=

Wi

N=-1
1

The power P is required 10 be 99%Fy = 0.198. Therefore




For N = 1. P = 0.1111; for N = 2. P; = 0.19323, For N = 3. P. = 0.19837. which is greater than 0.198.
Thus. N = 3.

2.8-2 Here To = 27. so that wo = 27/27 = 1. and

g(f)=ao+2ancosnt+b,.sinm -n<tsw
n=1
where
~ " p P 2(-1 n+l
"'0'—"1’ tdt = 0, a..=—2- tcosntdt =0, b,.:-z— tsinmdt-_-...(_.._z_
27 J_. 2 J_, 2 J_. n
Therefore
o 1
1 ___2 — n4l 2 e ] _ <t <
g(1) (-1) Zlnsmm r<t<m
n=

Figure 52.8-2 shows g(t) = t for all t and the corresponding Fourier series to represent g(t) over (—=, m).
g ) PLed

LYt .
-'n: < t»

-yl

T
Fig. S2.8-2
The power of glt]) is
Py= o ’(t)adf—wz
e -3

\oreover. {1om Parseval's theorem {Eq. (2.90)]
—_— =17 _—— -
PIEEEID-Rt
1 1

(b} If the N-term Fourier series is denoted by r(t). then

IN
IA
N

z{t) = 2(- "'”Z—s-nn'rt -

n=l

The power P, is required to be 0.9 x -";- = 0.372. Therefore
N
For N =1 Py =2;for N = 2. Px-—25 for N =5, P, = 2.927, which is less than 0.37%2. For N =6, Pr =

2.9%25. which is greater rhan 0. 372 Thus. N =6.
2.8-3 Recall that

hal-
.al -~
||

To/2

a0 = = g(t)d (1a)
~To/2
To /2

an = —/ g(1) cos nwot dt (ib)
To/2
9 [To/2

by = = g(1) sin nwot dt {1c)

To -To/2

-
[




Recall also that cos nwol is an even function and sin nwot is an odd function of t. If g(t) is an even function of
t. then g{!)cos nwot is also an even function and g(t)sin nwot is an odd function of . Therefore (see hint)

2 To/2

no = —/ g(t) dt (2a)
To Jo
4 To/2

n = = / g() cos nwot dt (2b)
To Jo

b =0 (2¢)

Similarly. if g(t) is an odd function of t. then g(t) cos nwot is an odd function of t and g(t)sin nwot is an even
function of . Therefore

ap=0n=0 (3a)
4 To/2

b = —/ g(t) sin nwot dt (3b)
To Jo

Observe that. because of symmetry, the integration required to compute the coefficients need be performed over
only half the period.

2.8-4 (a) To=4. wo = % = %. Because of even symmetry, all sine terms are zero.

g(t) =ao+ Za,. cos (%I)

n=1

ao = 0 (by inspection)
1 2
4 n7n nw 4  rn
in= = cos (—r) dt — cos (——1) dt} = — sin =~
4 (/e 2 N 2 nrw 2

Therefore. the Fourier series for g{t) is

(f'—_(c)x_'-lc .3_ﬁ+1 s—m;_-l-os.zﬁ'...)
g)—ﬂ_ (52 3082 5COS C 2?

Here b, = 0. and we aliow C, to take negative values. Figure §2.8-4a shows the plot of Ca.

(b To = 107. wo = % = }. Because of even symmetry. all the sine terms are zero.

gty =ao0+ Zn., cos (%1) + by sin (%f)

n=1

agp = % (by inspection)
a -—3- ’cos(ﬁt) it = ! (5) i (P-t)’ —-?—Sill(ﬂ)
"7 om f_, 5 )% s \n SIMA\F Mon mn 5

L
T(2]—1r sin (%t) dt=0 (integrand is an odd function of t)
-

bn

Here b, = 0. and we allow Cn, to take negative values. Note that Cp=anforn=0123, - Figure 52.8-4b
shows the plot of Cn.
(c) To=2m. wo= 1.

~
g(t) = ao + Za,. cosnt + bpsinn?  with a0 =05 (by inspection)

LES

' 2m 2
t
an=l/ — cosntdt =0, bn=l/ -t—sinmdtz—-l—

T Jo 2% 7 Jo 27 Tn

and

g(t) =05~ (sinr + %sin‘li + %sinSt + ]Zsin:u + )

1
P

=0.5+-1- [cos(1+1)+lcos(2f+1)+lcos(3t+1)+=--]
T 2 2 2 3 2

7
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P
;q&

d * Is .w_,
0‘3 cn 9 fo”.
“_‘L p  ar} —
o «f — e
= ur[ T P ¢ o l 3 [‘l ( )
-5 .ﬁaj z". 0-. -qeﬂ'

amsff‘ r .

The reason for vanishing of the cosines terms is that when 0.5 (the dc component) is subtracted from g(?). the
remaining function has odd symmetry. Hence. the Fourier series would contain dc and sine terms only. Figure
$2.8-4c shows the piot of Cr and 5.

(d) To=7m.wo=2and g(t) = it

ap=0 (by inspection).

a, =0 (n>0) because of odd symmetry.

4 n/4 4
bp = = —tsin2ntdt = -2— (—2— sin T2 _cos ﬂ’-)
Tl ™ 7n \7Tn 2 2

4
gft) = %sin'_"o' %sin4f - §—1r—25in6t— al;sinSH—m

- 4 n 1 I 4 " 1 T
= - - - fe = | b —— t 4 - - -
7‘_,_,cos(’..’t 2)4-"('05(‘1' 2) +91r2cos(6 + 2)+ﬂ_cos(81+ 2)+

& f [\‘ (d\ az l‘[‘ (b3
\ ‘
P2 Gl 7 .
ol \'r\ 3‘“ “'l r \-J_Kfr.- a)_' ] - g ?.11\' & =»
-E ~‘~o .’ ‘? ¢ K S, /Oﬁb /’“fl



2.8-5

Figure S2.8-4d shows the plot of Cy, and 8,.
(e) To = 3. wo = 27/3.

2 ! 2w 3 27n  2#n 2nn
n= 3 { —t gt =2 —— — L Sip e — ]
a 3 /0 cos = dt I {cos T+ 553 ]

2 [! nr 2rn 2mn 2nn
by = = { SN ——=idt = - — —
h 3/0 Sin —=tdt = 5=y [sin 3 3~ C08 3 ]
Therefore Co = é and
3 / 472n? 2rn  4nn 2%n . ' - 228 ¢os 210 - sin 322
Cp = ———s 24 — 2008 S — e 5N - = tan” ) : 3 b
2n2n? [\ 9 5 3 "3 J and # an (cos 20 4+ dngindzn ]

(f) To = 6. wo = 7/3. ug = 0.5 (by inspection). Even symmetry; bn =

3
0n == 4 Q\'l)(‘OSﬂllf
"6y T 3

2 ! ns 2 nx
= - -— it -— o —t et
3 [/0 cos =3 d +/1 (2~t)cos 3 d

=9 [cosf—"—co 2"”]
L T3 s 3

'I‘h--O’w'i(coslt—gcosrf‘ 1cossw{ icc:sEl-lr---)
Ghh=ieT s 3 T Tt T 3

Observe 1hat even harmonics vanish. The reason is that if the dc (0.5) is subtracted from ¢(#). the resulting
function has half-wave symmetry. {See Prob. 2.8-6). Figure $2.8-4f shows the plot of Cn.

]

An cven function g.i1) and an odd function go{1) have the property that

§elt) = gel—t) and o(t) = —gol~t) m

Every signal g(t) can be expressed as a sum of even and odd components because
g(t) = }ialt) + g(=t)] + L {9(#) - g(~1)]

v
even odd

From the definitions in Eq. (1). it can be seen that the first component on the right-hand side is an even
function. while the second component is odd. This is readily seen from the fact that replacing ¢ by —1 in the
first component yields the same function. The same maneuver in the second component yields the negative of

that component.
To find the odd and the even components of g(t) = u(t). we have

9(t) = ge(t) + go(t)
where {from Eq. (1))
Ge(® = $ () + u(-0)] = 3
and

90(t) = } lu(t) = n(=1)l = Jsgn()
The even and odd components of the signal u(t) are shown in Fig. 52.8-5a.
Similarly. to find the odd and the even components of ¢(t) = e”%u(t), we have
g(t) = 9 (t) + qo(t)
where
ge(t) = % [F_”u(f) + r“u(—!)]
and

10




2.8-6

05| Del® 9,1lt)
, .5

(2

0'5 9‘_‘*) o .5 5’ L*)

(o] >
(o) -&5

Fig. 52.8-5

9(t) = 3} [r'—“u('.) - (:"‘u(—t)]

The even and odd components of the signal ¢™*u () are shown in Fig. $2.8-5b.
For g(t) = ''. we have

It = ge(t) + golt)

where

ge(t)y =3 [r'-" + n'j'] = cos t
and

golt) = 4 [ = e#] = jsint
(a) For half wave symmetry

o =-s(1= )

and

2 To 2 To/2 To
and p = —/ g{t) cosnwot dt = —-/ g(t) cos nwot dt +/ g(t) cos nwot dt
To Jo To Jo To/2

Let r = t — To/2 in the second integral. This gives

r r70/2 To/2.
D) 0 0/
n = -7':'- / g(t) cos nwot dt +/ [ (.-r + 22-9) €08 Nwo (:r + -1;2) d:r]
o |lJo o 2
2 r pTo/2 To/2
= e / q(t) cosnwot dt + / —g{z)|- cos nwoz} d.r]
To [Jo 0
P r rTo/2
= — / g(t) cos nwot dt
To LJ O

In a similar way we can show that
4 To/2
by = = g(t) sin nwot dt
o J,

(b) (i) To = 8. wo = 5. a0 =0 (by inspection). Half wave symmetry. Hence

11




fl

Py (cos% + %sin _r;_w - l) (n odd)

4 4 1 2y nw
an = 3 [/o (f)cos—-tdf] = 3 [/ -2-cosTtdt]
4
2
4

Therefore
Az (-1 n=15913"
an =
-y (FF+1) n=371L15"
Similarly

1 2y nr 4 nt nx nw 4 nrw
bp = -/ s sin—tdt = ——s (sin— - -'—-cos——) = —— 8in (—-) (n odd)
o nir n2r 2

2 2 4 2 2 2
and
— nn . nw
g(t) = IZ”, a, cOs -—4—t + by sin Tl

(i1) To = 27. wo = 1. a0 = 0 (by inspection). Half wave symmetry. Hence

e ¥

g(t) = z a,cosnt + by sinnt
n=13,5.

2 ”
p = -/ 10 cogmt dt
0
”

2 ',—t/IO ]
= -’? [m("ol cosnt + nsin 'nf)]o (1! Odd)

2 -n/10
=?[n~+001('” 001 01)]
2 - 0.0465
— »/10 - = ————
= Tormr s 000 V=00

.4
/ e~ 0ginntdt
(]
k.4

2 [ e-t/10 .
== [m(—o.lsmnt -n cosnt)]o (n odd)

and

E RS

[

_ 2n (=110 _ 1) = 1.461n
~ (n2+0.01) T 24001

2.9-1 (a) To=4d.wo=7/2. Also Do = 0 {by inspection).

1 X3
. = L o AT gy eI gy = 2 sin ni >1
= f_, ' - 2 =

(b) To = 107, wo = 27/10m = 1/5

e ¥ ” .
z 1 i J ( . nw) ) (mr)
= izt - — it g = S [ - Y= —« —
q(t) E Dne’37, where D, lOn_/,: e dt Trm 2jsin 5 po sin | 5

n=- "N




I r'- I ‘ ' | 1
- i LY. a»
y I ' iy QL ! 3 l 3 l
-7 -4 a 1
3 3 3 ‘5I - a2
90
o5 Th
S
TR AN~
'S 3 | 773 iy
Fig. 52.9-1
(<) -
int F- H
g(t) = Do + Z Dnc'™.  where. by inspection D¢ =0.5
2« : X 0
Da = -1—/ Loty = | sothat |Dal= 1 and D.= {3 e
2r fo 2m 27n 2mn 5 n<0
(d) To=7.wo=2and Dn=0
-~ n/4 -
g(t) = Z Dne'®™, where Dy = %‘/_”/4 ::Tfa"z"' dt = ;r—nj. (;2;'- sin 122- - €OS f—;)

13




(e) To= K 2—.;'

st ) 1 ) 3 2 .
glt) = Z Da s S where n = %‘/; te~ i gt = yprsd [(- e o (‘72;" + 1) - 1]

r=o

Therefore
_ 3 [, 4m2n? 2rn  4mn . 2%n -1 22 cos 21 _ gin 252
|Dal = yrsEy { 2+ 3 —2cos—3———3-sm—3—- and {Dn = tan cosz—?+1§'—’sin%ﬂ—l

(f) To=6. w0 =7/3 Do =105

g(t) = 0.5+ Z Dy’

nem= - o

P
il

] -1 zxnt 1 pmne : jxnt 3 nw 2rn
b4 9 ""5— ""r - -‘1‘ 2 e——— ( —— _—)
6[_/_2 (t+2)e dt+/-1r' dt+/1 (=t +2)e df] o e cos 3 cos 3

15

3{¢ Cn 1D\
I - {3 []ees I
1 8

* -3-_5-!15'5 n->

© " @
D
o {@n ]1 hdal I
i 5'-1 - e 14 3 €
3 -5 ° n -»
* 1 LYy, l 5 { 1
>

Fig. S2.9-2

2.9-2
g(1) = 3cost + sin (5! - %) - 2cos (St - %)

For a compact trigonometric form. all terms must have cosine form and amplitudes must be positive. For this

reason. we rewrite g{f) as
g(t) = 3cost + cos (5t - % - %) + 2cos (St - % ~1r)

= 3cost + cos (St— -2—3{) + 2cos (8!— ﬂg-)

Figure $2.9-2a shows amplitude and phase spectra.

(b) By inspection of the trigonometric spectra in Fig. S8
§2.9-2b. By inspection of exponential spectra in Fig. $2.9-

2.9-2a, we plot the exponential spectra as shown in Fig.
2a, we obtain

9(t) = %(r“ +e7 )4 RICES. 2 p"l“'-’s")] + [,,J'<!=-=§=> + ,,—j(az—ss-)]

1
2
i () () d () ()

14




2.9-3 (a)

o(t) = 2 + 2cos(2t — ) + cos(3t ~ %)
= 2 - 2cos2t + sin 3t

(b) The exponential spectra are shown in Fig. $2.9-3.
(c) By inspection of exponential spectra

g(t) =2+ [ 4 eI 4 % A LT

=2+2cos(2t—1r)+cos(3t—%)

(d) Observe that the two expressions (trigonometric and exponential Fourier series) are equivalent.

Fig. 52.9-3

2.9-4

1 To/2 To/2
Dp=— {/ f () cos nwot dt — j/ f(t)sin nwot dt]

To Ta/2 -To/2

If git) is even. the second term on the right-hand side is zero because its integrand is an odd function of 1.
Hence. D, is real. In contrast. if g{?) is odd. the first term on the right-hand side is zero because its integrand
is an odd function of . Hence. Dn is imaginary.
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