The Impedance Matrix

Consider the 4-port microwave device shown below:

Note in this example, there are four identical transmission lines connected to the same "box". Inside this box there may be a very simple linear device/circuit, or it might contain a very large and complex linear microwave system.
\rightarrow Either way, the "box" can be fully characterized by its impedance matrix!

First, note that each transmission line has a specific location that effectively defines the input to the device (i.e., $z_{1 p}, z_{2 p}$, $z_{3 p}, z_{4 p}$). These often arbitrary positions are known as the port locations, or port planes of the device.

Thus, the voltage and current at port n is:

$$
V_{n}\left(z_{n}=z_{n \rho}\right) \quad I_{n}\left(z_{n}=z_{n \rho}\right)
$$

We can simplify this cumbersome notation by simply defining port n current and voltage as I_{n} and V_{n} :

$$
V_{n}=V_{n}\left(z_{n}=z_{n \rho}\right) \quad I_{n}=I_{n}\left(z_{n}=z_{n \rho}\right)
$$

For example, the current at port 3 would be $I_{3}=I_{3}\left(z_{3}=z_{3 \rho}\right)$.

Now, say there exists a non-zero current at port 1 (i.e., $I_{1} \neq 0$), while the current at all other ports are known to be zero (i.e., $I_{2}=I_{3}=I_{4}=0$).

Say we measure/determine the current at port 1 (i.e., determine I_{1}), and we then measure/determine the voltage at the port 2 plane (i.e., determine V_{2}).

The complex ratio between V_{2} and I_{1} is know as the transimpedance parameter Z_{21} :

$$
Z_{21}=\frac{V_{2}}{I_{1}}
$$

Likewise, the trans-impedance parameters Z_{31} and Z_{41} are:

$$
Z_{31}=\frac{V_{3}}{I_{1}} \quad \text { and } \quad Z_{41}=\frac{V_{4}}{I_{1}}
$$

We of course could also define, say, trans-impedance parameter Z_{34} as the ratio between the complex values I_{4} (the current into port 4) and V_{3} (the voltage at port 3), given that the current at all other ports (1, 2, and 3) are zero.

Thus, more generally, the ratio of the current into port n and the voltage at port m is:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that } I_{k}=0 \text { for all } k \neq n \text {) }
$$

Q: But how do we ensure that all but one port current is zero?

A: Place an open circuit at those ports!

Placing an open at a port (and it must be at the port!) enforces the condition that $I=0$.

Now, we can thus equivalently state the definition of transimpedance as:

$$
Z_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that all ports } k \neq n \text { are open) }
$$

Q: As impossible as it sounds, this handout is even more boring and pointless than any of your previous efforts. Why are we studying this? After all, what is the likelihood that a device will have an open circuit on all but one of its ports?!

A: OK, say that none of our ports are open-circuited, such that we have currents simultaneously on each of the four ports of our device.

Since the device is linear, the voltage at any one port due to all the port currents is simply the coherent sum of the voltage at that port due to each of the currents!

For example, the voltage at port 3 can be determined by:

$$
V_{3}=Z_{34} I_{4}+Z_{33} I_{3}+Z_{32} I_{2}+Z_{31} I_{1}
$$

More generally, the voltage at port m of an N-port device is:

$$
V_{m}=\sum_{n=1}^{N} Z_{m n} I_{n}
$$

This expression can be written in matrix form as:

$$
\mathbf{V}=\mathcal{Z} \mathbf{I}
$$

Where I is the vector:

$$
\mathbf{I}=\left[I_{1}, I_{2}, I_{3}, \cdots, I_{N}\right]^{\top}
$$

and V is the vector:

$$
\mathbf{V}=\left[V_{1}, V_{2}, V_{3}, \ldots, V_{N}\right]^{\top}
$$

And the matrix \mathcal{Z} is called the impedance matrix:

$$
\mathcal{Z}=\left[\begin{array}{ccc}
Z_{11} & \ldots & Z_{1 n} \\
\vdots & \ddots & \vdots \\
Z_{m 1} & \cdots & Z_{m n}
\end{array}\right]
$$

The impedance matrix is a N by N matrix that completely characterizes a linear, N-port device. Effectively, the impedance matrix describes a multi-port device the way that Z_{L} describes a single-port device (e.g., a load)!

But beware! The values of the impedance matrix for a particular device or network, just like Z_{L}, are frequency dependent! Thus, it may be more instructive to explicitly write:

$$
\mathcal{Z}(\omega)=\left[\begin{array}{ccc}
Z_{11}(\omega) & \ldots & Z_{1 n}(\omega) \\
\vdots & \ddots & \vdots \\
Z_{m 1}(\omega) & \cdots & Z_{m n}(\omega)
\end{array}\right]
$$

The Admittance Matrix

Consider again the 4-port microwave device shown below:

In addition to the Impedance Matrix, we can fully characterize this linear device using the Admittance Matrix.

The elements of the Admittance Matrix are the transadmittance parameters $Y_{m n}$, defined as:

$$
\left.Y_{m n}=\frac{I_{m}}{V_{n}} \quad \text { (given that } \quad V_{k}=0 \text { for all } k \neq n\right)
$$

Note here that the voltage at all but one port must be equal to zero. We can ensure that by simply placing a short circuit at these zero voltage ports!

Now, we can thus equivalently state the definition of transadmittance as:

$$
y_{m n}=\frac{V_{m}}{I_{n}} \quad \text { (given that all ports } k \neq n \text { are short - circuited) }
$$

Just as with the trans-impedance values, we can use the transadmittance values to evaluate general circuit problems, where none of the ports have zero voltage.

Since the device is linear, the current at any one port due to all the port currents is simply the coherent sum of the currents at that port due to each of the port voltages!

For example, the current at port 3 can be determined by:

$$
I_{3}=Y_{34} V_{4}+Y_{33} V_{3}+Y_{32} V_{2}+Y_{31} V_{1}
$$

More generally, the current at port m of an N-port device is:

$$
I_{m}=\sum_{n=1}^{N} Y_{m n} V_{n}
$$

This expression can be written in matrix form as:

$$
\mathbf{I}=\mathcal{Y} \mathrm{V}
$$

Where I is the vector:

$$
\mathbf{I}=\left[I_{1}, I_{2}, I_{3}, \cdots, I_{N}\right]^{\top}
$$

and V is the vector:

$$
\mathbf{V}=\left[V_{1}, V_{2}, V_{3}, \ldots, V_{N}\right]^{\top}
$$

And the matrix \mathcal{Y} is called the admittance matrix:

$$
\mathcal{Y}=\left[\begin{array}{ccc}
y_{11} & \ldots & y_{1 n} \\
\vdots & \ddots & \vdots \\
y_{m 1} & \ldots & y_{m n}
\end{array}\right]
$$

The admittance matrix is a N by N matrix that completely characterizes a linear, N-port device. Effectively, the admittance matrix describes a multi-port device the way that y_{L} describes a single-port device (e.g., a load)!

But beware! The values of the admittance matrix for a particular device or network, just like Y_{L}, are frequency dependent! Thus, it may be more instructive to explicitly write:

$$
\mathcal{Y}(\omega)=\left[\begin{array}{ccc}
y_{11}(\omega) & \ldots & y_{1 n}(\omega) \\
\vdots & \ddots & \vdots \\
y_{m 1}(\omega) & \ldots & y_{m n}(\omega)
\end{array}\right]
$$

Q: You said earlier that $Y_{m n} \neq 1 / Z_{m n}$. Is there any relationship between the admittance and impedance matrix of a given device?

A: I don't know! Let's see if we can figure it out.
Recall that we can determine the inverse of a matrix. Denoting the matrix inverse of the admittance matrix as \mathcal{Y}^{-1}, we find:

$$
\begin{aligned}
\mathbf{I} & =\mathcal{Y} \mathbf{V} \\
\mathcal{Y}^{-1} \mathbf{I} & =\mathcal{Y}^{-1}(\mathcal{Y} \mathbf{V}) \\
\mathcal{Y}^{-1} \mathbf{I} & =\left(\mathcal{Y}^{-1} \mathcal{Y}\right) \mathbf{V} \\
\mathcal{Y}^{-1} \mathbf{I} & =\mathbf{V}
\end{aligned}
$$

Meaning that:

$$
V=\mathcal{Y}^{-1} I
$$

But, we likewise know that:

$$
\mathbf{V}=\mathcal{Z} \mathbf{I}
$$

By comparing the two previous expressions, we can conclude:

$$
\mathcal{Z}=\mathcal{Y}^{-1} \quad \text { and } \quad \mathcal{Z}^{-1}=\mathcal{Y}
$$

Reciprocal and

Lossless Networks

We can classify multi-port devices or networks as either lossless or lossy; reciprocal or non-reciprocal. Let's look at each classification individually:

Lossless

A lossless network or device is simply one that cannot absorb power. This does not mean that the delivered power at every port is zero; rather, it means the total power flowing into the device must equal the total power exiting the device.

A lossless device exhibits an impedance matrix with an interesting property. Perhaps not surprisingly, we find for a lossless device that the elements of its impedance matrix will be purely reactive:

$$
\operatorname{Re}\left\{Z_{m n}\right\}=0 \quad \text { for a lossless device }
$$

If the device is lossy, then the elements of the impedance matrix must have at least one element with a real (i.e., resistive) component.

Moreover, we similarly find that if the elements of an admittance matrix are all purely imaginary (i.e., $\operatorname{Re}\left\{y_{m n}\right\}=0$), then the device is lossless.

Reciprocal

Generally speaking, most passive, linear microwave components will turn out to be reciprocal-regardless of whether the designer intended it to be or not!

Reciprocity is basically a "natural" effect of using simple linear materials such as dielectrics and conductors. It results from a characteristic in electromagnetics called "reciprocity"-a characteristic that is difficult to prevent!

But reciprocity is a tremendously important characteristic, as it greatly simplifies an impedance or admittance matrix!

Specifically, we find that a reciprocal device will result in a symmetric impedance and admittance matrix, meaning that:

$$
Z_{m n}=Z_{n m} \quad Y_{m n}=Y_{n m} \quad \text { for reciprocal devices }
$$

For example, we find for a reciprocal device that $Z_{23}=Z_{32}$, and $y_{21}=y_{12}$.

Let's illustrate these concepts with four examples:
$\mathcal{Z}=\left[\begin{array}{ccc}j 2 & 0.1 & j 3 \\ -j & -1 & 1 \\ 4 & -2 & 0.5\end{array}\right]$
Neither lossless nor reciprocal.
$\mathcal{Z}=\left[\begin{array}{ccc}j 2 & j 0.1 & j 3 \\ -j & -j 1 & j 1 \\ j 4 & -j 2 & j 0.5\end{array}\right]$
Lossless, but not reciprocal.
$\mathcal{Z}=\left[\begin{array}{ccc}j 2 & -j & 4 \\ -j & -1 & -j 2 \\ 4 & -j 2 & j 0.5\end{array}\right]$
Reciprocal, but not lossless.
$\mathcal{Z}=\left[\begin{array}{ccc}j 2 & -j & j 4 \\ -j & -j & -j 2 \\ j 4 & -j 2 & j 0.5\end{array}\right]$
Both reciprocal and lossless.

Example: Evaluating the Admittance Matrix

Consider the following two-port device:

Let's determine the admittance matrix of this device!

Step 1: Place a short at port 2.

Step 2: Determine currents I_{1} and I_{2}.
Note that after the short was placed at port 2, both resistors are in parallel, with a potential V_{2} across each.

The current I_{1} is thus simply the sum of the two currents through each resistor:

$$
I_{1}=\frac{V_{1}}{2 R}+\frac{V_{1}}{R}=\frac{3 V_{1}}{2 R}
$$

The current I_{2} is simply the opposite of the current through R :

$$
I_{2}=-\frac{V_{1}}{R}
$$

Step 3: Determine trans-admittance y_{11} and y_{21}.

$$
Y_{11}=\frac{I_{1}}{V_{1}}=\frac{3}{2 R}
$$

$$
Y_{21}=\frac{I_{2}}{V_{1}}=-\frac{1}{R}
$$

Note that y_{21} is real-but negative!

This is still a valid physical result, although you will find that the diagonal terms of an impedance or admittance matrix (e.g., Y_{22}, Z_{11}, Y_{44}) will always have a real component that is positive.

To find the other two trans-admittance parameters, we must move the short and then repeat each of our previous steps!

Step 1: Place a short at port 1.

Step 2: Determine currents I_{1} and I_{2}.
Note that after a short was placed at port 1, resistor $2 R$ has zero voltage across it-and thus zero current through it!

Likewise, from KVL we find that the voltage across resistor R is equal to V_{2}.

Finally, we see from KCL that $I_{1}=I_{2}$.
The current I_{2} thus:

$$
I_{2}=\frac{V_{2}}{R}
$$

and thus:

$$
I_{1}=-\frac{V_{2}}{R}
$$

Step 3: Determine trans-admittance y_{12} and y_{22}.

$$
\begin{aligned}
& Y_{12}=\frac{I_{1}}{V_{2}}=-\frac{1}{R} \\
& Y_{22}=\frac{I_{2}}{V_{2}}=\frac{1}{R}
\end{aligned}
$$

The admittance matrix of this two-port device is therefore:

$$
\mathcal{Y}=\frac{1}{R}\left[\begin{array}{cc}
1.5 & -1 \\
-1 & 1
\end{array}\right]
$$

Note this device (as you may have suspected) is lossy and reciprocal.

Q: What about the impedance matrix? How can we determine that?

A: One way is simply determine the inverse of the admittance matrix above.

$$
\begin{aligned}
\mathcal{Z} & =\mathcal{Y}^{-1} \\
& =R\left[\begin{array}{cc}
1.5 & -1 \\
-1 & 1
\end{array}\right]^{-1} \\
& =R\left[\begin{array}{ll}
l & 2 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

A: Another way to determine the impedance matrix is simply to apply the definition of trans-impedance to directly determine the elements of the impedance matrix-similar to how we just determined the admittance matrix!

Specifically, follow these steps:
Step 1: Place an open at port 2 (or 1)
Step 2: Determine voltages V_{1} and V_{2}.
Step 3: Determine trans-impedance Z_{11} and Z_{21} (or Z_{12} and Z_{22}).

You try this procedure on the circuit of this example, and make sure you get the same result for \mathcal{Z} as we determined on the previous page (from matrix inversion)-after all, you want to do well on my long, scary, evil exam!

Example: Using the Impedance Matrix

Consider the following circuit:

Where the 3-port device is characterized by the impedance matrix:

$$
\mathcal{Z}=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 1 & 4 \\
2 & 4 & 1
\end{array}\right]
$$

Let's now determine all port voltages V_{1}, V_{2}, V_{3} and all currents I_{1}, I_{2}, I_{3}.

Q: How can we do that-we don't know what the device is made of! What's inside that box?

A: We don't need to know what's inside that box! We know its impedance matrix, and that completely characterizes the device (or, at least, characterizes it at one frequency).

Thus, we have enough information to solve this problem. From the impedance matrix we know:

$$
\begin{aligned}
& V_{1}=2 I_{1}+I_{2}+2 I_{3} \\
& V_{2}=I_{1}+I_{2}+4 I_{3} \\
& V_{3}=2 I_{1}+4 I_{2}+I_{3}
\end{aligned}
$$

Q: Wait! There are only 3 equations here, yet there are 6 unknowns!?

A: True! The impedance matrix describes the device in the box, but it does not describe the devices attached to it. We require more equations to describe them.

1. The source at port 1 is described by the equation:

$$
V_{1}=16.0-(1) I_{1}
$$

2. The short circuit on port 2 means that:

$$
V_{2}=0
$$

3. While the load on port 3 leads to:

$$
V_{3}=-(1) I_{3} \quad \text { (note the minus sign!) }
$$

Now we have 6 equations and 6 unknowns! Combining equations, we find:

$$
\begin{aligned}
& V_{1}=16-I_{1}=2 I_{1}+I_{2}+2 I_{3} \\
& \therefore \quad 16=3 I_{1}+I_{2}+2 I_{3} \\
& V_{2}=0=I_{1}+I_{2}+4 I_{3} \\
& \therefore 0=I_{1}+I_{2}+4 I_{3} \\
& V_{3}=-I_{3}=2 I_{1}+4 I_{2}+I_{3} \\
& \therefore \quad 0=2 I_{1}+4 I_{2}+2 I_{3}
\end{aligned}
$$

Solving, we find (I'll let you do the algebraic details!):

$$
\begin{array}{l|l|l}
I_{1}=7.0 & I_{2}=-3.0 & I_{3}=-1.0 \\
V_{1}=9.0 & V_{2}=0.0 & V_{3}=1.0
\end{array}
$$

