Objectives

(0) To develop a understanding about frame work of smith chart

Smith Chart

Smith Chart is a graphical method to solve many transmission line problems and provides us with a visual indication of microwave device performance.

Where it can not help us

Where it can help us

The Foundations

Before Looking at basics of smith chart .. Always Keep in mind All impedance that are being considered are normalized.
We will consider all cases as Loss less line, until, unless we are not told to do so

Normalized Impedance is

raves

The complex Gamma Plane
 Smith Chart

\qquad

anent

Resistance

Resistance R is a real value and can be plotted on a real line.

For Passive Resistance, Real parts are considered

Plotting Imaginary Part

(c) Ahmad Bill

Swedishchap.weebly.com

Plotting Normalized Impedance

We know that normalized impedance is represented as

$$
\bar{z}=\frac{z_{2}}{z_{0}}=r+j *
$$

And hence can be easily plotted on graph

Note each dimension is defined by a single real line: the horizontal line (x axis) indicating the real component of z (ie., $\operatorname{Re}\{z\}$), and the vertical line (y axis) indicating the imaginary component of impedance z (ie., $7 \mathrm{~m}\{z\}$). The intersection of these two lines is the point denoting the impedance $Z=0$.

Lets Plot

If we have to plot: Lets say $Z=75-j 30$

Selecting Region

Considering positive passive load Graph area?

Defining Areas

Recall

For every passive load we have a equivalent value of reflection co-efficient If we know one we can plot other

$$
\begin{gathered}
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
\Gamma=\frac{\ddot{z}-Z_{0}}{z+Z_{0}}=\frac{\bar{z}-1}{\bar{z}+1}
\end{gathered}
$$

I can write reflection co-efficient in terms of its real and imaginary part as follow

$$
\begin{aligned}
\Gamma & =\frac{\bar{z}-1}{\bar{z}+1} \\
& =\frac{(r+j x)-1}{(r+j x)+1}
\end{aligned}
$$

Plotting Values on Reflection Co-efficient Plane

(C) Ahmad Bill

Swedishchap.weebly.com

(c) Ahmad Bilal

Swedishchap.weebly.com

The reflection Co-efficient

The value of gamma can be represented, Either in terms of Polar or rectangular components If I represent Gamma in terms of polar it will have form of

$$
=\operatorname{Re}^{j \theta}
$$

Observation

The value of magnitude of R

Plotting

(c) Ahmad Bilal

Swedishchap.weebly.com

Wait wait .. Why are we doing these conversions from one form to another?

Understanding

To understand it, we need to answer few questions from previous topics, which my class has completely understood.

QI. What is the need of Taking two plots, What was the problem with Impedance plane

Resistance
Q. Is it Possible to draw $R=$ infinity .
Q, Why do we need to consider $R=$ infinity

Answer

(c) Ahmad Bilal

Swedishchap.weebly.com

Question

Recall

The magnitude of the reflection coefficient was limited: $0<\Gamma<1$ Therefore, the validity region for the complex Γ plane consists of all points inside the

(C) Ahmad Bilal

Swedish chap.weebly.com

Mapping \mathbf{Z} to Γ

Recall that line impedance and reflection coefficient are equivalent

$$
\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}} \quad \text { and } \quad Z(z)=Z_{0}\left(\frac{1+\Gamma(z)}{1-\Gamma(z)}\right)
$$

Recall for Smith chart we have to calculate the normalized values

Normalized Impedance Values

$$
z^{\prime}(z)=\frac{Z(z)}{Z_{0}}=\frac{R(z)}{Z_{0}}+j \frac{X(z)}{Z_{0}}=r(z)+j x(z)
$$

$$
\begin{aligned}
\Gamma(\boldsymbol{z}) & =\frac{\boldsymbol{Z}(\boldsymbol{z})-\boldsymbol{Z}_{0}}{\boldsymbol{Z}(\boldsymbol{z})+\boldsymbol{Z}_{0}} \\
& =\frac{\boldsymbol{Z}(\boldsymbol{z}) / \boldsymbol{Z}_{0}-1}{\boldsymbol{Z}(\boldsymbol{z}) / \boldsymbol{Z}_{0}+1} \\
& =\frac{\boldsymbol{z}^{\prime}(\boldsymbol{z})-1}{\boldsymbol{z}^{\prime}(\boldsymbol{z})+1}
\end{aligned}
$$

(c) Ahmad Bill

Swedishchap.weebly.com

Normalized Equation

$$
\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}} \quad \text { and } \quad Z(z)=Z_{0}\left(\frac{1+\Gamma(z)}{1-\Gamma(z)}\right)
$$

$$
\Gamma(z)=\frac{z^{\prime}(\boldsymbol{z})-1}{\boldsymbol{z}^{\prime}(\boldsymbol{z})+1} \quad \boldsymbol{z}^{\prime}(\boldsymbol{z})=\frac{1+\Gamma(\boldsymbol{z})}{1-\Gamma(\boldsymbol{z})}
$$

(c) Ahmad Bill

Swedishchap.weebly.com

Mini Assignment

We know that Z, Z (normalized) and reflection coefficient can be mapped with respect to each other.

Using The same method, fill out the table and draw, the point on both Reflection coefficient and Impedance plane

case	z	z^{\prime}	Γ
1	∞		
2	0		
3	z_{0}		
4	$j Z_{0}$		
5	$-j Z_{0}$		

