
浣
The Smith chart
The Smith Ghavt

Pointing Specific Parts on Planes

WE Wish to plot values from impedance plane to Reflection coefficient plane.

We Already know that

$$
\begin{aligned}
\bar{z} & =r+j x=\frac{t+\Gamma}{1-\Gamma} \\
r+j x & =\frac{1+u+j v}{1-(u+j v)}
\end{aligned}
$$

Where u represents real part and V represent imaginary part

Solving Equations

$$
\begin{aligned}
\bar{z} & =r+j x=\frac{t+\Gamma}{t-\Gamma} \\
r+j x & =\frac{1+u+j v}{1-(u+j v)}
\end{aligned}
$$

If I solve the following equations and separate values for real and imaginary parts, I will get two equations

So when I will map my impedances on Gama plane, the equations will give two set of curves, one corresponding to real value r and other corresponding to imaginary value x

Equations

Constant Resistance Circle

$$
\begin{gathered}
\left(u^{2}-2\right) \frac{r}{r+1}(u+v) 2+\frac{r-1}{r+1}=0 \\
\text { Center }=\left(\frac{r}{r+1}, 0\right) \quad \text { Radius }=\frac{1}{r+1}
\end{gathered}
$$

(c) Ahmad Bilal

Swe dishchap.weebly.com

Constant

Constant Reactance circle

$$
\begin{aligned}
& \left(u^{2} v^{2}\right)-2 u-\frac{2}{x}(v+1)=0 \\
& \text { Center }=\left(1, \frac{1}{x}\right) \quad \text { Radius }=\frac{1}{x}
\end{aligned}
$$

Equations

From equations we observe that both equation represent circle on gamma plane

For any given value of $r I$ get a circle on given real gamma plane and for any value of $X I$ get a circle on complex gamma plane

Constant Resistance Circle

So if I put values and calculate my real part on complex gamma plane 1 will get some thing

	Center		Radius
r	$r /(r+1)$	0	$1 /(r+1)$
0	0	0	1
1	0.5	0	0.5
4	0.8	0	0.2
10	0.909091	0	0.090909
\#DIV/0!	\#DIV/0!	0	\#DIV/0!

$$
\begin{array}{r}
\text { Center }=\left(\frac{r}{r+1}, 0\right) \\
\text { Radius }=\frac{1}{r+1}
\end{array}
$$

Constant Reactance circle

Constant Reactance circle

$$
\begin{aligned}
& \left(u^{2} v^{2}\right)-2 u-\frac{2}{x}(v+1)=0 \\
& \text { Center }=\left(1, \frac{1}{x}\right) \quad \text { Radius }=\frac{1}{x}
\end{aligned}
$$

Similarly we get another set of circles. Plotting the circles

Constant Reactance circle

	Center		Radius
\mathbf{x}	1	$1 / \mathbf{x}$	$1 / \mathbf{x}$
0	1	\#DIV/0!	\#DIV/0!
0.25	1	4	4
0.5	1	2	2
1	1	1	1
4	1	0.25	0.25
10	1	0.1	0.1

Center $=\left(1, \frac{1}{x}\right)$

$$
\text { Radius }=\frac{1}{x}
$$

(c) Ahmad Bilal

Swedishchap.weebly.com

Similarly we can calculate values for negative imaginary values

Choosing area of validity for Reactance circle

(C) Ahmad Bilal

Swe dishchap.weebly.com

