

Pointing Specific Parts on Planes WE Wish to plot values from impedance plane to Reflection coefficient plane. We Already know that Z = ++j = <u>++ +</u> $\tau_{+j} = \frac{1 + u + jv}{1 - (u + jv)}$ Where u represents real part and V represent imaginary part

C Ahmad Bilal

Solving Equations

$$\overline{z} = \tau + j\pi = \frac{1 + \pi}{1 - \pi}$$

$$\tau + j\pi = \frac{1 + u + j\pi}{1 - (u + j\pi)}$$

If I solve the following equations and separate values for real and imaginary parts, I will get two equations

So when I will map my impedances on Gama plane, the equations will give two set of curves, one corresponding to real value r and other corresponding to imaginary value x

© Ahmad Bilal

Equations

© Constant Resistance Circle

$$(u^2 - 2) \frac{r}{r+1} (u+v) 2 + \frac{r-1}{r+1} = 0$$

$$\bigcirc \operatorname{Center} = \left(\frac{r}{r+1}, 0\right)$$

Radius= $\frac{1}{r+1}$

© Ahmad Bilal

.

Constant

© Constant Reactance circle

$$(u^{2^{+}}v^{2}) - 2u - \frac{2}{x}(v+1) = 0$$

Center = $(1, \frac{1}{x})$ Radius= $\frac{1}{x}$

© Ahmad Bilal

Equations

© From equations we observe that both equation represent circle on gamma plane

For any given value of r I get a circle on given real gamma plane and for any value of x I get a circle on complex gamma plane

Constant Resistance Circle

So if I put values and calculate my real part on complex gamma plane I will get some thing

	Center		Radius
r	r/(r+1)	0	1/(r+1)
0	0	0	1
1	0.5	0	0.5
4	0.8	0	0.2
10	0.909091	0	0.090909
#DIV/0!	#DIV/0!	0	#DIV/0!

Center =
$$\left(\frac{r}{r+1}, 0\right)$$
Radius = $\frac{1}{r+1}$

C Ahmad Bilal

Constant Reactance circle

© Constant Reactance circle

$$(u^{2^{+}}v^{2}) - 2u - \frac{2}{x}(v+1) = 0$$

Center = $(1, \frac{1}{x})$ Radius= $\frac{1}{x}$

Similarly we get another set of circles . Plotting the circles

C Ahmad Bilal

Constant Reactance circle

	Center		Radius
x	1	1/x	1/x
0	1	#DIV/0!	#DIV/0!
0.25	1	4	4
0.5	1	2	2
1	1	1	1
4	1	0.25	0.25
10	1	0.1	0.1

 $\bigcirc \text{Center } = \left(\mathsf{I}, \frac{1}{x}\right)$ $\bigcirc \text{ Radius} = \frac{1}{2}$ $\boldsymbol{\chi}$

C Ahmad Bilal

	Center		Radius
x	1	1/x	1/x
0	1	#DIV/0!	#DIV/0!
0.25	1	4	4
0.5	1	2	2
1	1	1	1
4	1	0.25	0.25
10	1	0.1	0.1

Choosing area of validity for Reactance circle

© Ahmad Bilal

