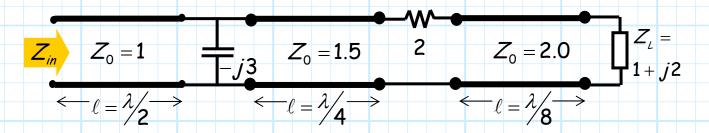
Note also for this case (the electrically short transmission line), the voltage and current at each end of the transmission line are approximately the same!

$$V(z=-\ell) \approx V(z=0)$$
 and $I(z=-\ell) \approx I(z=0)$ if $\ell \ll \lambda$

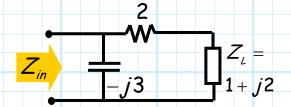
If $\ell \ll \lambda$, our "wire" behaves **exactly** as it did in EECS 211!

Example: Input Impedance

Consider the following circuit:



If we **ignored** our new μ -wave knowledge, we might **erroneously** conclude that the input impedance of this circuit is:



Therefore:

$$Z_{in} = \frac{-j3(2+1+j2)}{-j3+2+1+j2} = \frac{6-j9}{3-j} = 2.7-j2.1$$

Of course, this is not the correct answer!

We must use our **transmission line theory** to determine an accurate value. Define Z_1 as the input impedance of the last section:

$$Z_1$$
 $Z_0 = 2.0$ $Z_L = 1 + j2$ $\ell = \frac{\lambda}{8}$

Jim Stiles The Univ. of Kansas

Dept. of EECS

we find that Z_1 is:

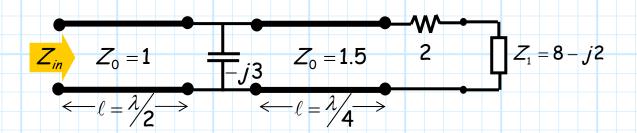
$$Z_{1} = Z_{0} \left(\frac{Z_{L} \cos \beta \ell + j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell + j Z_{L} \sin \beta \ell} \right)$$

$$= 2 \left(\frac{(1+j2) \cos (\pi/4) + j 2 \sin (\pi/4)}{2 \cos (\pi/4) + j (1+j2) \sin (\pi/4)} \right)$$

$$= 2 \left(\frac{1+j4}{j} \right)$$

$$= 8-j2$$

Therefore, our circuit now becomes:



Note the resistor is in **series** with impedance Z_1 . We can **combine** these two into one impedance defined as Z_2 :

$$Z_{in} Z_{0} = 1$$

$$= -j3$$

$$= -\ell = \frac{\lambda}{4}$$

$$= 2 - 10 - j2$$

 $Z_2 = 2 + Z_1 = 2 + (8 - j2) = 10 - j2$

Jim Stiles The Univ. of Kansas

Dept. of EECS

Now let's define the input impedance of the **middle** transmission line section as Z_3 :

$$Z_0 = 1.5$$
 $Z_2 = 10 - j2$ $\leftarrow \ell = \frac{\lambda}{4}$

Note that this transmission line is a quarter wavelength $(\ell = \frac{\lambda}{4})$. This is one of the special cases we considered earlier! The input impedance Z_3 is:

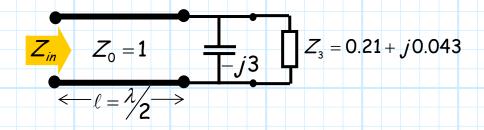
$$Z_{3} = \frac{Z_{0}^{2}}{Z_{L}}$$

$$= \frac{Z_{0}^{2}}{Z_{2}}$$

$$= \frac{1.5^{2}}{10 - j2}$$

$$= 0.21 + j0.043$$

Thus, we can further simplify the original circuit as:



Now we find that the impedance Z_3 is **parallel** to the capacitor. We can **combine** the two impedances and define the result as impedance Z_4 :

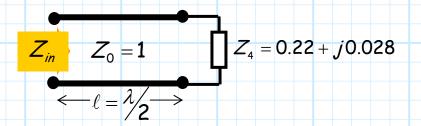
Jim Stiles The Univ. of Kansas Dept. of EECS

$$Z_4 = -j3 || (0.21 + j0.043)$$

$$= \frac{-j3(0.21 + j0.043)}{-j3 + 0.21 + j0.043}$$

$$= 0.22 + j0.028$$

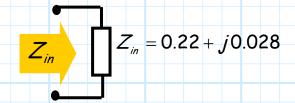
Now we are left with this equivalent circuit:



Note that the remaining transmission line section is a half wavelength! This is one of the special situations we discussed in a previous handout. Recall that the input impedance in this case is simply equal to the load impedance:

$$Z_{in} = Z_{I} = Z_{4} = 0.22 + j0.028$$

Whew! We are finally done. The input impedance of the original circuit is:



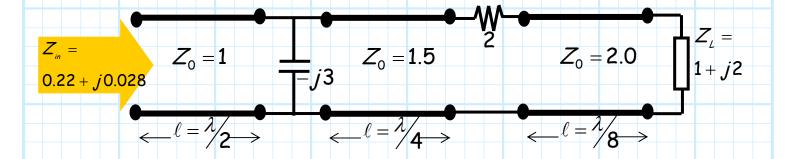
Jim Stiles The Univ. of Kansas Dept. of EECS

Dept. of EECS

Note this means that this circuit:



and this circuit:



are precisely the **same**! They have **exactly** the same impedance, and thus they "behave" precisely the **same** way in any circuit (but **only** at frequency ω_0 !).

Jim Stiles The Univ. of Kansas