## Stripline

## Transmission Lines

Stripline-a TEM transmission line!


The characteristic impedance is therefore:
and:

$$
\begin{aligned}
Z_{0} & =\sqrt{\frac{L}{C}} \\
\beta & =\omega \sqrt{L C} \\
& =\omega \sqrt{\varepsilon \mu} \\
& =\frac{\omega}{c} \sqrt{\varepsilon_{r}}
\end{aligned}
$$

However, there are no exact analytic solutions for the capacitance and inductance of stripline-they must be numerically analyzed. However, we can use those results to form an analytic approximation of characteristic impedance:

$$
Z_{0}=\frac{30 \pi}{\sqrt{\varepsilon_{e}}} \frac{b / W_{e}}{1+0.441 b / W_{e}}
$$

where $W_{e}$ is a value describing the effective width of the center conductor:

$$
\frac{W_{e}}{b}=\frac{W}{b}- \begin{cases}0 & \text { for } W / b>0.35 \\ (0.35-W / b)^{2} & \text { for } W / b<0.35\end{cases}
$$

Note that $Z_{0}$ is expressed in terms of the unitless parameter $W / b$, a coefficient value analogous to the ratio $a / b$ used to describe coaxial transmission line geometry.

From the standpoint of stripline design, we typically want to determine the value $W / b$ for a desired value $Z_{0}$ (i.e., the inverse of the equation above). This result is provided by equation 3.180 of your textbook.

## Microstrip

## Transmission Lines

Microstrip-a quasi-TEM transmission line!

(b)

There are no exact analytic solutions for a microstrip transmission line-they must be numerically analyzed. However, we can use those results to form an analytic approximation of microstrip transmission line behavior.

The propagation constant $\beta$ of a microstrip line is related to its effective relative dielectric $\varepsilon_{e}$ :
where:

$$
\beta=\frac{\omega}{c} \sqrt{\varepsilon_{e}}
$$

$$
\varepsilon_{e}=\frac{\varepsilon_{r}+1}{2}+\frac{\varepsilon_{r}-1}{2} \frac{1}{\sqrt{1+12 d / W}}
$$

Note that $\varepsilon_{e} \neq \varepsilon_{r}$; in fact, $1<\varepsilon_{e}<\varepsilon_{r}$.

Likewise, the characteristic impedance of a microstrip line is approximately:
$Z_{0}=\left\{\begin{array}{l|}\frac{60}{\sqrt{\varepsilon_{e}}} \ln \left(\frac{8 d}{W}+\frac{W}{4 d}\right) \quad \text { for } W / d \leq 1 \\ \frac{120 \pi}{\sqrt{\varepsilon_{e}}[W / d+1.393+0.667 \ln (W / d+1.444)]}\end{array} \quad\right.$ for $W / d \geq 1$
Note that both transmission line parameters are expressed in terms of the unitless parameter $W / d$, a coefficient value analogous to the ratio $a / b$ used to describe coaxial transmission line geometry.

From the standpoint of microstrip design, we typically want to determine the value $W / d$ for a desired value $Z_{0}$ (i.e., the inverse of the equation above). This result is provided by equation 3.197 of your textbook.

