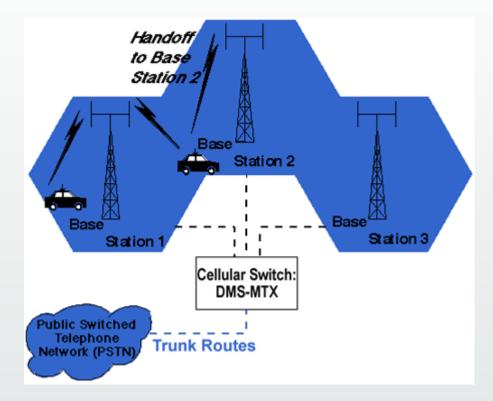


APPLICATIONS OF TELECOM


WIRELESS COMMUNICATION : Lecture 3 Ahmad Bilal Ahmadbilal.webs.com

What is Mobility

- Initially Internet and Telephone Networks is designed assuming the user terminals are static
 - No change of location during a call/connection
 - A user terminals accesses the network always from a fixed location
- Mobility and portability
 - Portability means changing point of attachment to the network offline
 - Mobility means changing point of attachment to the network online

Degrees of Mobility : Challenge

- Walking Users
 - Low speed
 - Small roaming area
 - Usually uses high-bandwith/low-latency access
- Vehicles
 - High speeds
 - Large roaming area
 - Usually uses low-bandwidth/high-latency access
 - Uses sophisticated terminal equipment (cell phones)

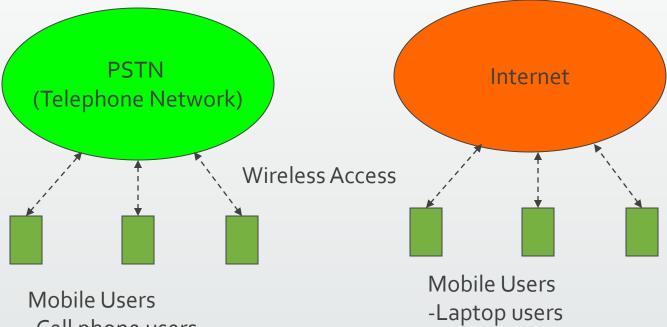
What is PCS Personal Communication Services

What is PCS

- Personal Communication Services
 - A wide variety of network services that includes wireless access and personal mobility services
 - Provided through a small terminal
 - Enables communication at any time, at any place, and in any form.
- The market for such services is tremendously big
 - Think of cell-phone market

Several PCS systems

- High-tier Systems
 - GSM: Global System for Mobile Communications
 - The mobile telephony system that we are using
 - IS-95 cdmaOne System
 - CDMA based multiple access


Several PCS systems

- Low-tier systems
 - Residential, business and public cordless access applications and systems
 - Cordless Telephone 2 (CT2)
 - Digital Enhanced Cordless Telephone (DECT)
 - Personal Access Communication Systems (PACS)

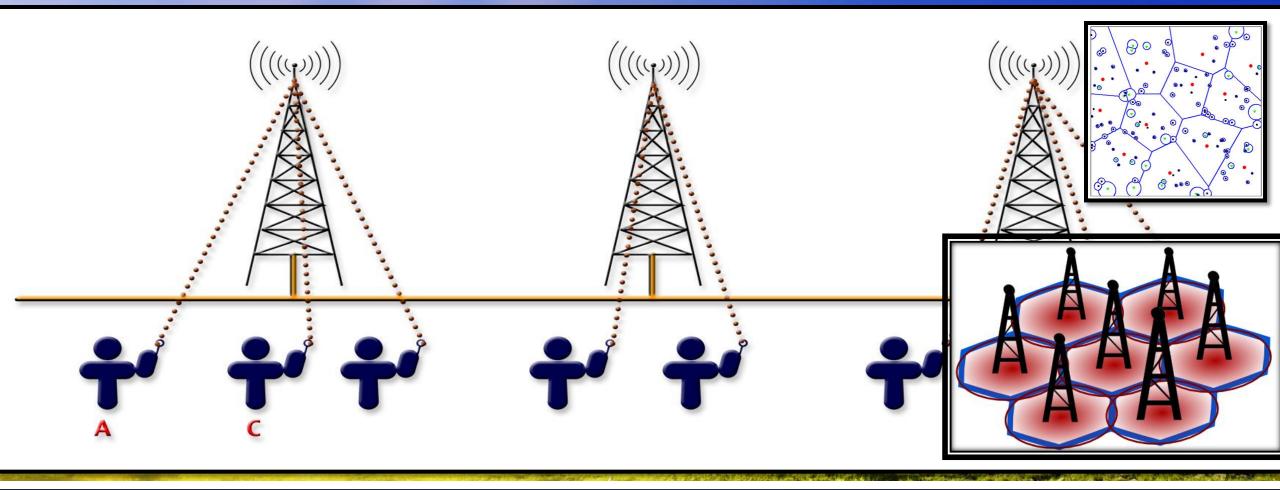
PCS Problems

- How to integrate mobile and wireless users to the Public Switched Telephone Network (PSTN) (Voice Network)
 - Cellular mobile telephony system
- How to integrate mobile and wireless users to the Internet (Data Network)
 - Mobile IP, DHCP, Cellular IP
- How to integrate all of them together and also add multimedia services (3G Systems)

-Cell phone users -Cordless phone users

Telecom People View

Data Networking People View


-Mobile IP, DHCP enabled

-Pocket PC users

computers

Major Mobile Radio Standards USA

Standard	Туре	Year Intro	Multiple Access	Frequency Band (MHz)	Modulation	Channel BW (KHz)
AMPS	Cellular	1983	FDMA	824-894	FM	30
USDC	Cellular	1991	TDMA	824-894	DQPSK	30
CDPD	Cellular	1993	FH/Packet	824-894	GMSK	30
IS-95	Cellular/PCS	1993	CDMA	824-894 1800-2000	QPSK/BPSK	1250
FLEX	Paging	1993	Simplex	Several	4-FSK	15
DCS-1900 (GSM)	PCS	1994	TDMA	1850-1990	GMSK	200
PACS	Cordless/PCS	1994	TDMA/FDMA	1850-1990	DQPSK	300

Cellular System

Introduction

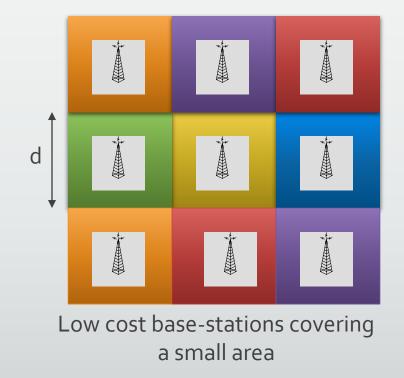
Quick Answer

- Why it is called a cellular Service
- Is Wimax a cellular Service
- What are advantages of Cellular Services

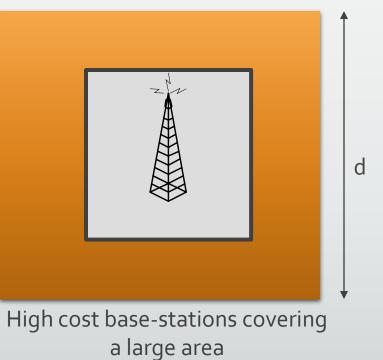
Cellular Services

- Provide area Coverage to PSTN
- Limited Frequency Spectrum
- Geographical Region Divided in to cells
- Frequencies, Times, Codes reused to maximize Coverage

Cells should over Lap in real life ?

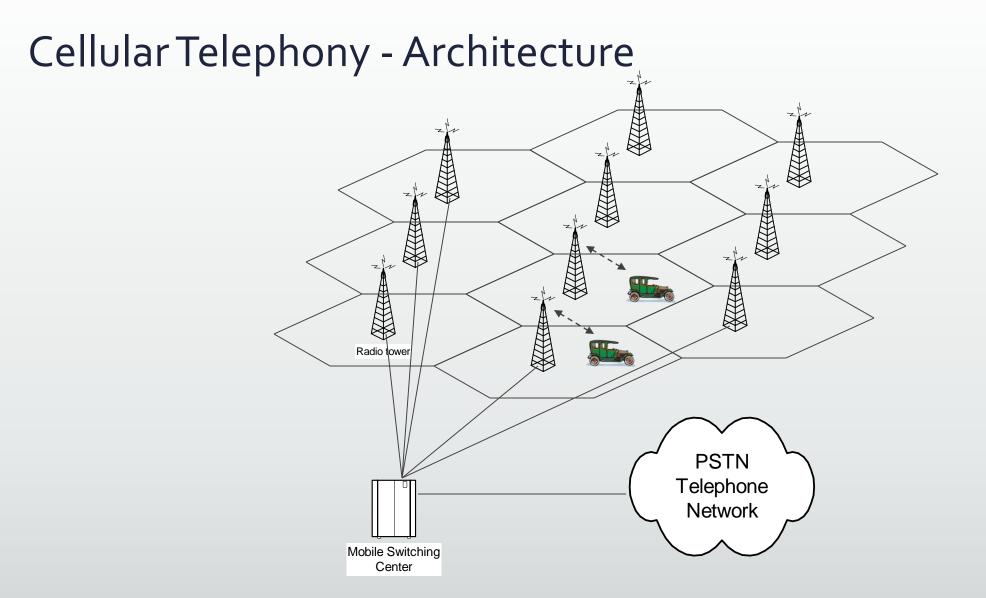

Features of Cellular Systems

- High Capacity is achieved by limiting coverage of each Base station to a small geographical area called cell
- Hand off is a Important feature
- Cell Cell Boundary
 - Users
 - Geo Conditions
 - Link Budget
 - (Total Power Transmitted vs Total Power Recived)
 - (Cell boundaries are not fixed)- CDMA
 - Interference (Re using Phenomena)
 - Co Channel Interference (Worse at boundaries)


Features of Cellular Systems

System Capacity

- System Capacity is the number all users that can communicate (use the system) at the same time
- A base station (cell) has a fixed number of channels available, hence at a given time a fixed number of users can talk simultaneously



System 2

Example : Cellular Telephony

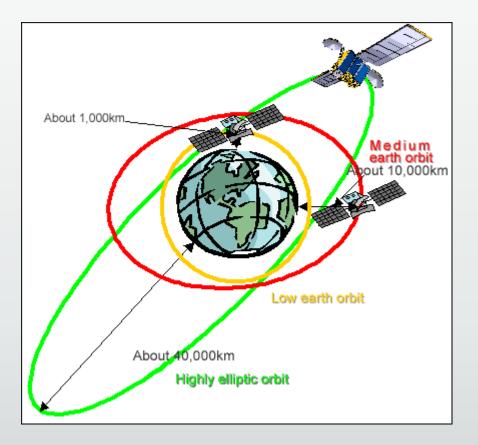
- Characterized by
 - High mobility provision
 - Wide-range
 - Two-way voice communication
 - Handoff and roaming support
 - Integrated with sophisticated public switched telephone network (PSTN)
 - High transmit power requires at the handsets (~2W)

Wireless LANs (WLAN)

- Characterized by
 - Low mobility (not for vehicular use)
 - High speed data transmission
 - Confined regions buildings and campuses
 - Coverage: 100m 300m per base station
 - Nodes- Made by local Computer
 - Data is normally sent via Packet
 - Channel Access is Shared (Video)
 - Speed: 2-11Mbps, 20Mbps
 - Uses ISM bands
 - 902-928 MHz
 - 2400-2483.5 MHz
 - 5725-5850 MHz

Access Point / Infrastructure

WLAN Standards


	Bitrate	Frequency Band	Range
IEEE 802.11b	5.5 – 11Mbps	2.4 GHz	~100m
IEEE 802.11a	54 Mbps	5 Ghz	~100m
HiperLAN (Europe)	20Mbps	5 GHz	~50m
HiperLAN/2	54 Mbps	5 GHz	~50m

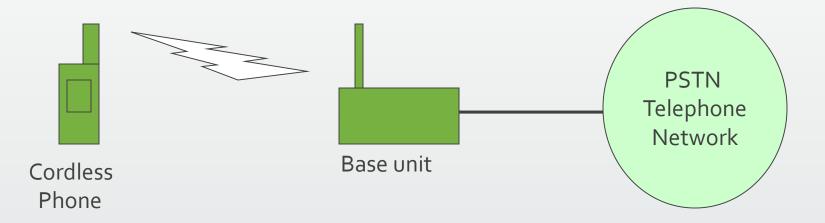
Satellite Communication

Satellite Based Mobile Systems

- Categorized as
 - Two-way (or one-way) limited quality voice or data transmission
 - Very wide range and coverage
 - Large regions
 - Sometimes global coverage
 - Very useful in sparsely populated areas: rural areas, sea, mountains, etc.
 - Target: Vehicles and/or other stationary/mobile uses
 - Expensive base station (satellites) systems

Satellite based systems

- Very large coverage
 - Low overall system capacity
- Expensive service
- Proposed Satellite Systems
 - LEOS: Low-earth orbit satellite systems
 - 10-100 satellites/system
 - High overall system capacity, low delay
 - Many but comparably less expensive satellites
 - MEOS: Medium-earth satellite systems
 - GEOS: Geostationary or Geosynchronous Orbit Systems
 - Fewer than 10 satellites/system
 - Low overall system capacity, high end-to-end delay (~0.5sec)
 - Very expensive satellites
- Iridium, Globalstar, Inmarsat are some example systems


Cordless System

Cordless Telephone

- Full Duplex
- Use radio Channel to Connect to BS
- BS is connected to PSTN via a telephone line
- May cover few meters

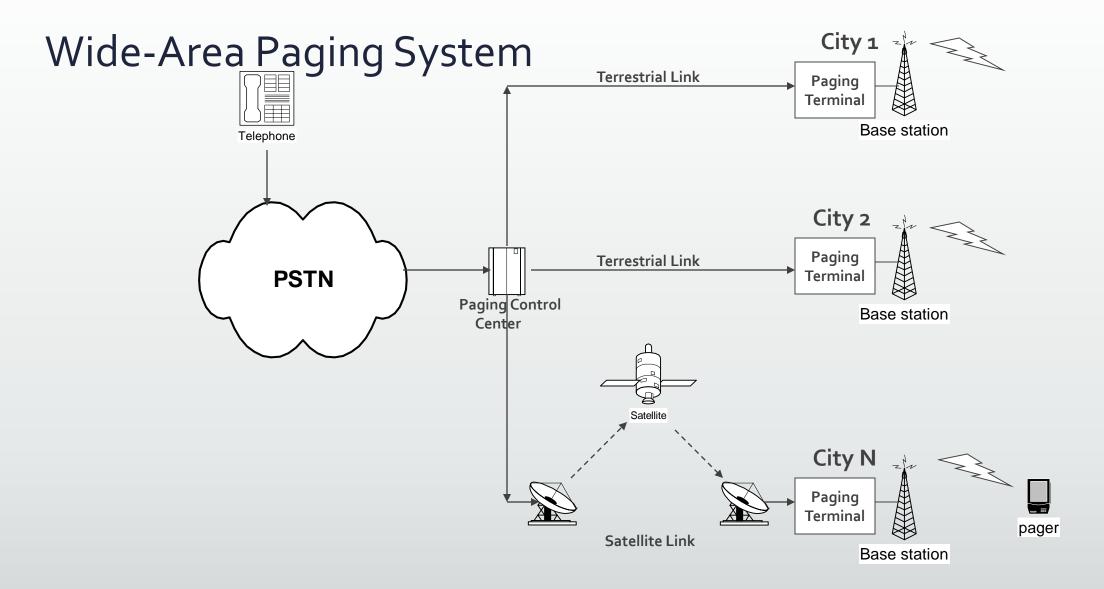
Cordless Telephones

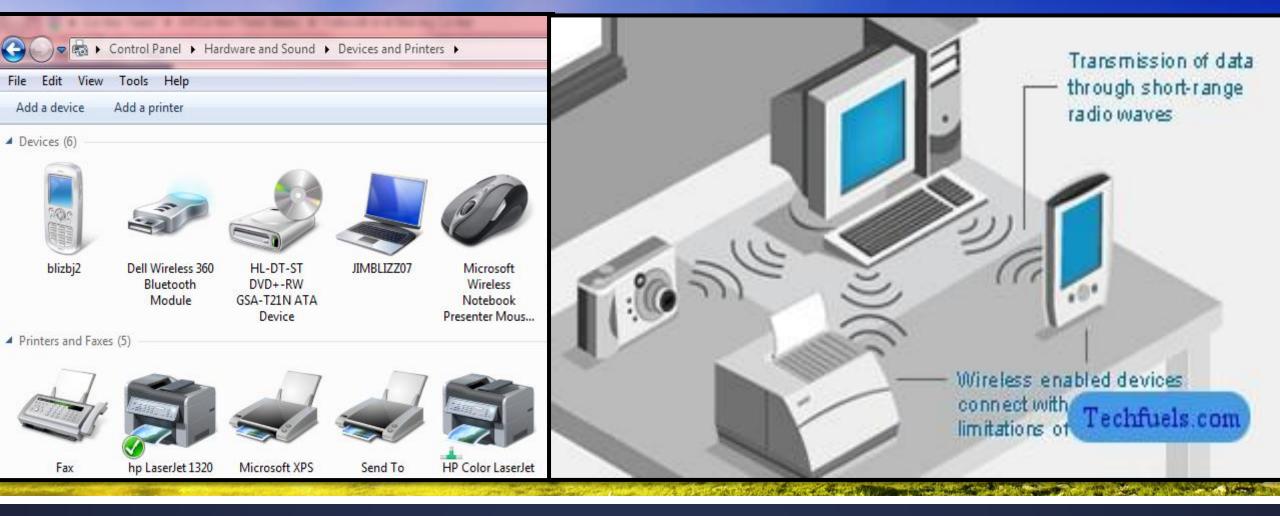
Cordless Telephones

- Low power consumption
- Low cost equipment, small form factor and long talk-time
- No handoffs between base units
- Appeared as analog devices

Cordless Telephones

- Usage
 - At homes
 - At public places where cordless phone base units are available
- Design Choices
 - Few users per MHz
 - Few users per base unit
 - Many base units are connected to only one handset
 - Large number of base units per usage area
 - Short transmission range

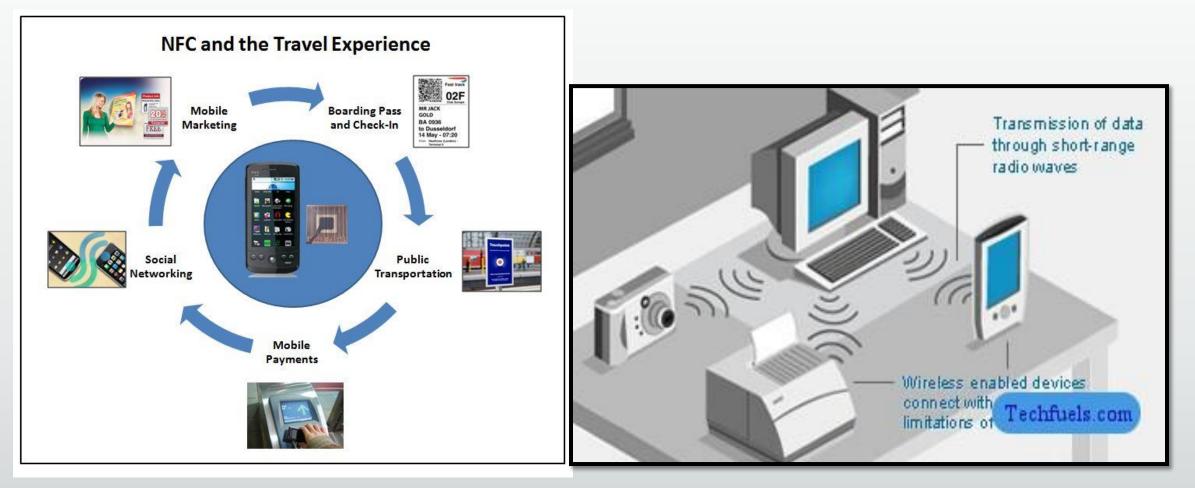

WIRELESS PAGING SYSTEM



Paging System

Paging Systems

- Send brief message to subscriber. Message can be either numeric message, alpaha numeric message or voice message
- Categorized as
 - One-way messaging
 - Wide-area coverage (One cell may cover up to 2~5 KM)
 - Back bone may consist of satellites , Telephone lines
 - Low complexity, very low-power pager (receiver) devices
 - Being Replace by Mobile
 - Message(page) in Done in a Broad Cast Manner
 - Simple Terminals

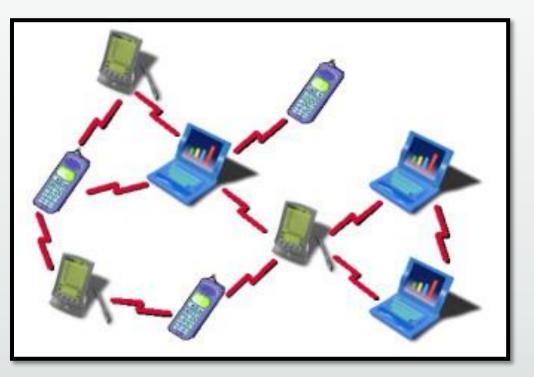


Personal Area Networks (PANs)

- Bluetooth
 - 2.5GHz ISM band
 - 10m range, 1mW transmit power
 - 100m range, requires increase in transmit power
 - 1 Mbps data rate shared between 7 devices
 - FHSS spread spectrum use
 - TDD duplex scheme
 - Retricted start topology
 - 1 master connects to 7 slaves

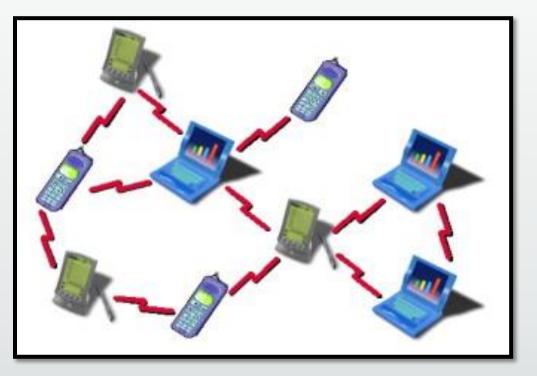
NFC

BLUETOOTH



Emerging Wireless Technology

- Sensor Networks
- Ad- Hoc Networks
- Ultra Wideband


Ad-HOC NETWORK

- NO FIXED TECHNOLOGY Dynamic Topology
- PEER TO PEER TECNOLOGY
- EVERY NODE ACTS A ROUTER
- RECONFIGUREABLE
- No Back Bone
- Multi Hope
- Fully Connected with Different SNR

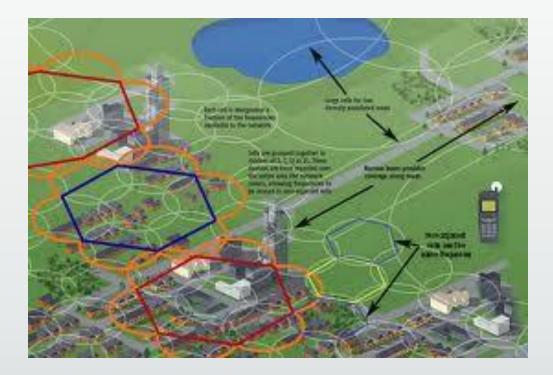
Ad-HOC NETWORK

- Capacity ~ Unknown
- Provides a Feasible Network
- Energy Constrains

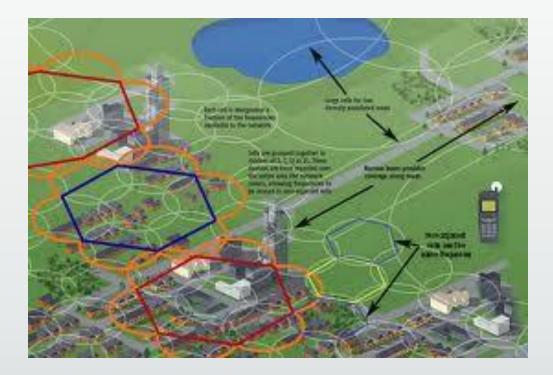
A Small Comparison

Wide Area

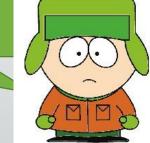
Network


Metropolitan Area

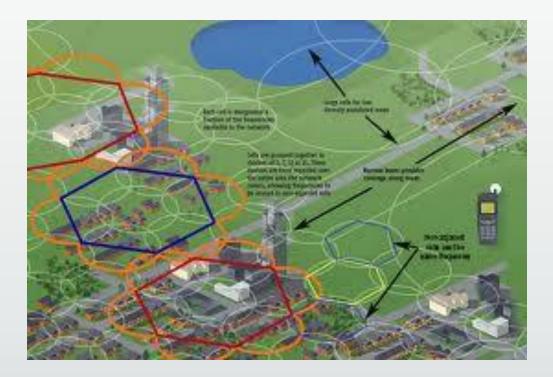
Network


MAKING A MOBILE CALL

Pre Call Setup- Registering a Cell Phone

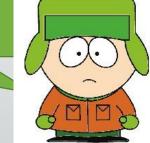

- Mobile phone is turned
- phone does not have an allocated channel,
- It is therefore necessary for there to be some methods or allocated means within the cellular telecommunications network, whereby a newly switched on mobile can communicate with the network and set up the standard communication.
- Even if a call is not to be made instantly, the network needs to be able to communicate with the mobile to know where it is

STEP 1 : Switch on The Phone



- Phone is turned on.
- Scan the Strongest Forward channel
- Monitors Control Chanel (Scan Channel).
- Scans for Strongest BS

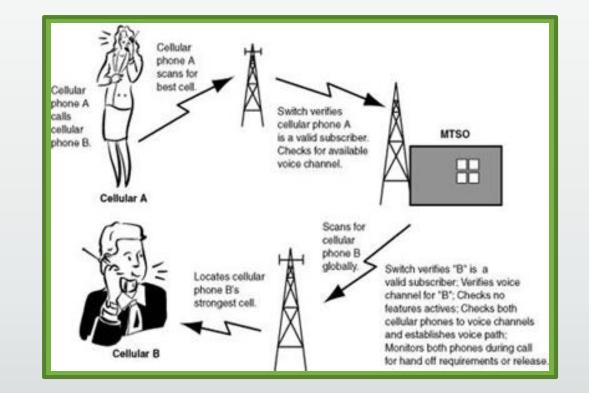
Remember : Control Channel makes up normally 5 % of total allocated frequency . Rest of frequency is used for data and voice



Calling a Mobile Phone

- Phone is turned on.
- Scan the Strongest Forward channel
- Monitors Control Chanel.
- Scans for Strongest BS

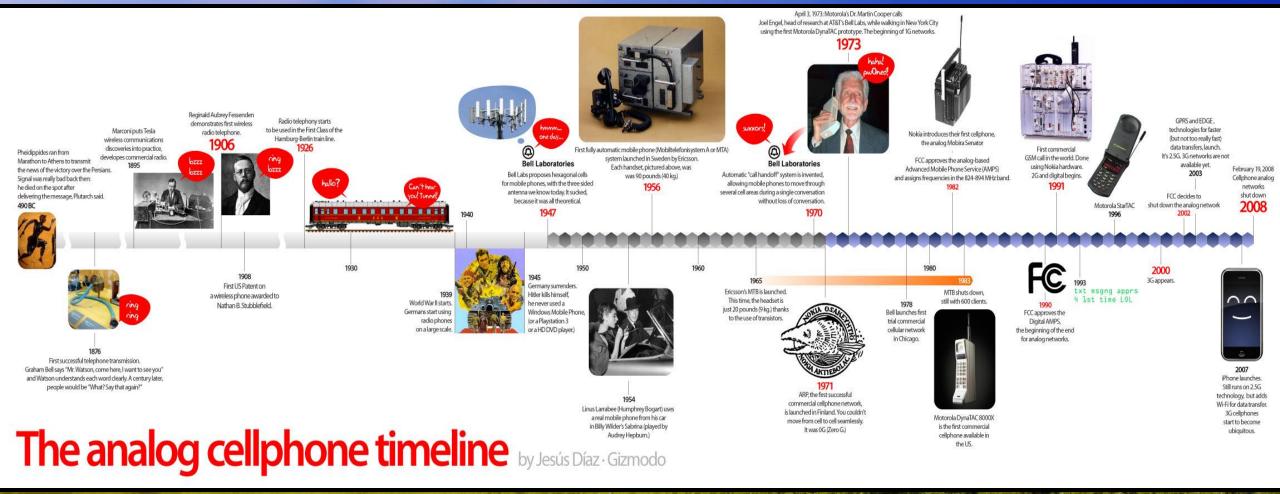
Remember : Control Channel makes up normally 5 % of total allocated frequency . Rest of frequency is used for data and voice


Calling a Mobile Phone

- MSC dispatches a Request to all BS in cellular System
- MIN is broadcasted as a paging message on all FCH
- Mobile Identifies it self over reverse channel.
- BS→ MSC : Informs of handshake
- MSC instruct the BS to move the call to unused voice channel (TYPICALLY 6)
- BS→ Mobile : Change frequency
- Data message (Alert is transmitted) over FCH

Calling from Mobile Phone

- Call initiation request is sent
 - Transmits \rightarrow (MIN, ESN, and Number to be called)
 - SCM Station Class mark also Transmitted
- BS \rightarrow Receives data and route it to MSC
- MSC validates request , initiate Billing
- Move call to PSTN/MSC
- MSC instruct the BS to move the call to unused voice channel (TYPICALLY 6)



ROLE OF MSC during call

- MSC Adjust transmitted power of Mobile Unit and BS
- Handoff

The Roaming

- In wireless telecommunications, roaming is a general term referring to the extension of connectivity service in a location that is different from the home location where the service was registered. Roaming ensures that the wireless device is kept connected to the network, without losing the connection.
- When a customer Enters a new geographical area, that is different From his HLR area, he is registered as a ROAMER
- This is Accomplished by
- MSC transmits (FCC)request to all unregistered mobiles to report the MIN and ESN over (RCC)
- Mobile Reports back
- Data is verified from HLR (billing Status)
- Allow Registration and Calling Facility

Modern Wireless Communication

History of Wireless and Mobile Communication

History

- 1831: Faraday had first started experimenting with electromagnetic waves.
 - Electromagnetic wave:
 - one of the waves that are propagated by simultaneous periodic variations of electric and magnetic field intensity and that include
 - radio waves
 - infrared
 - visible light
 - ultraviolet,
 - X rays
 - Gamma rays

History – Mathematics and EM

- 1864: Maxwell who had been working on a mathematical model for electromagnetic waves finally published his paper on the subject.
 - One of the consequences of his theories was that E.M. waves would travel at near the speed of light.
 - This had also been experimentally determined by others at the time.

History

• At the time very few people fully understood Maxwell's equation.

History – Existence of EM Waves

- At the same time that Lodge was carrying out his experiments, Heinrich Hertz in Germany
 was also doing some of his own concerning Maxwell's equations.
 - Hertz's investigations into Maxwell's equations involved generation, detection, and measurement of
 waves in free space, rather than along wires.
- 1887: Hertz proves existence of EM waves; first spark transmitter generates a spark in a receiver several meters away
 - The units of frequency waves is named after him, 1 cycle/second equals a Hertz.

History – Wireless Telegraph

- 1896: Guglielmo Marconi demonstrates wireless telegraph to English telegraph office
- 1897: ``The Birth of Radio'' Marconi awarded patent for wireless telegraph
- 1897: First ``Marconi station'' established on Needles island to communicate with English coast
- 1898: Marconi awarded English patent no. 7777 for tuned communication
- 1898: Wireless telegraphic connection between England and France established

History – Frequency Tuning

- In 1898: Tesla gave one of the first wireless demonstrations with a what we would call a remote control boat.
 - He realized that things of this nature would need to only respond to their own frequency, and remain inactive otherwise.
 - This was Tesla's fundamental radio tuning invention, which he had first described several years earlier.

History – Transoceanic Communication

- 1901: Marconi successfully transmits radio signal across Atlantic Ocean from Cornwall to Newfoundland
- 1902: First bidirectional communication across Atlantic
- 1909: Marconi awarded Nobel prize for physics

History – Voice over Radio

- 1914: First voice over radio transmission
- 1920s: Mobile receivers installed in police cars in Detroit
- 1930s: Mobile transmitters developed; radio equipment occupied most of police car trunk
- by 1934: Amplitude Modulation (AM) systems used by police cars and stations
- 1935: Edwin Armstrong demonstrated frequency modulation (FM) for the first time. Majority of police systems converted to FM

History – Mobile Telephony

- 1946: First public mobile telephone service was introduced. First interconnection of mobile users to public switched telephone network (PSTN)
- 1949: FCC (Federal Communications Commission) of US recognizes mobile radio as new class of service
- 1950-1960: AT&T Bell Labs developed theory and techniques for cellular telephony

History - Pager

- 1959: The term "pager" was first used, referring to a Motorola radio communications product
- 1968: AT&T proposed cellular telephony to FCC of US.
- 1974: The first pager was introduced by Motorola.
- 1977: Public cell phone testing began.
- 1979: World's first cellular system was implemented by NTT Japan.
- 1980: 3.2 million pagers used wordwide. They had limited range.

History – Cordless Phones and Cellular Telephony

- 1980: Cordless phones started to emerge.
- Early 1980s: Wireless modems emerged.
- 1981: European Nordic Mobile Telephone (NMT) System was developed
- 1983: FCC allocated wireless spectrum for mobile telephony.
- 1983: AMPS, first USA analog cellular telephony standard was developed

History – Wireless Data

- 1983: Intoduction of ARDIS wireless data service
- 1985: European Total Access Cellular System (ETACS) was deployed.
- 1985: In Germany, cellular standard C-450 was introduced.
- 1985: ISM bands defined for commercial spread spectrum applications

History – Wireless LANs, GSM

- 1987: IEEE 802.11 Wireless LAN working grup founded.
- 1989: In Europe, GSM was defined.
- 1990: In Europe, GSM deployed.
- by 1990: Wide-area paging had been invented and over 22 million pagers were in use
- 1990: FCC allocated spctrum in 900 Mhz for cordless phones.
- 1990: Announcement of Wireless LAN products

History

- 1991: First US digital cellular hardware was installed. IS-54 and IS-136 emerged.
- 1991: RAM mobile (mobitex) data service
- 1992: HyperLAN in Europa
- 1992: World Radio Conference in Malaga (WRC-92) allocated frequencies for future UMTS use.
 - Frequencies 1885 2025 and 2110 2200 MHz were identified for IMT2000 use

History

- 1993: First GSM 1800 system in commercial operation in UK
- 1993: IS-95 code-division multiple-access (CDMA) spread- spectrum digital cellular system deployed in US
- 1993: CDPD (Cellular Digital Packet Data) over AMPS was realized
- 1994: GSM system deployed in US
- 1994: there were over 61 million pagers in use and pagers became popular for personal use.

History – Bluetooth, PCS

- 1994: Ericsson starts investigating a low-power, low-cost radio technology to remove cables around cell phones (born of Bluetooth idea)
- 1995: FCC auctions off frequencies in Personal Communications System (PCS) band at 1.8 GHz for mobile telephony
- 1995: DSS started to be used for cordless phones

History – Third Generation

- 1995 The UMTS Task Force was established
- 1996: The UMTS Forum was established in Zurich.
- 1997 the UMTS Forum produced its first report entitled
- 1997: IEEE 802.11 has been standardized (2 Mbps)
- 1997: IS-95B standard complete; includes 64 kbps data

History – Personal Area Networks

- 1998: Bluetooth was born. SIG for Bluetooth has been established by the leadership of 5 companies: Ericsson, IBM, Intel, Toshiba, Nokia
- 1998: HomeRF Working Group was formed.
- 1998: FCC gave 2.5 GHz spectrum for cordless phones
- 1998 ETSI SMG meeting in Paris both W-CDMA and TD-CDMA proposals were combined to UMTS air interface specification.

History – 3G Trials and Progress

- 1998: The first call using a Nokia W-CDMA terminal in DoCoMo's trial network was completed at Nokia's R&D unit near Tokyo in Japan.
- Jun 1998: CDMA2000 submitted to ITU for IMT-2000
- Dec 1998: The first meetings of the 3GPP Technical Specification Groups in France.
- 1999: IEEE 802.11b approved (11 Mbps)
- 1999: The first open Bluetooth specification 1.0 is released.

Histor – 3G Progress

- Jul 1999: Phase 1 CDMA2000 standard complete and approved for publication
- Jul 1999: Korea Telecom Freetel launches world's first IS-95B network in Korea
- 1999: Nokia Oyj said that it has completed what it claims to be the first WCDMA call through the public switched telephone network in the world
- Nov 1999: ITU-R Task Group 8/1 endorses CDMA2000 standards (three modes) for IMT-2000

History – 3G Progress

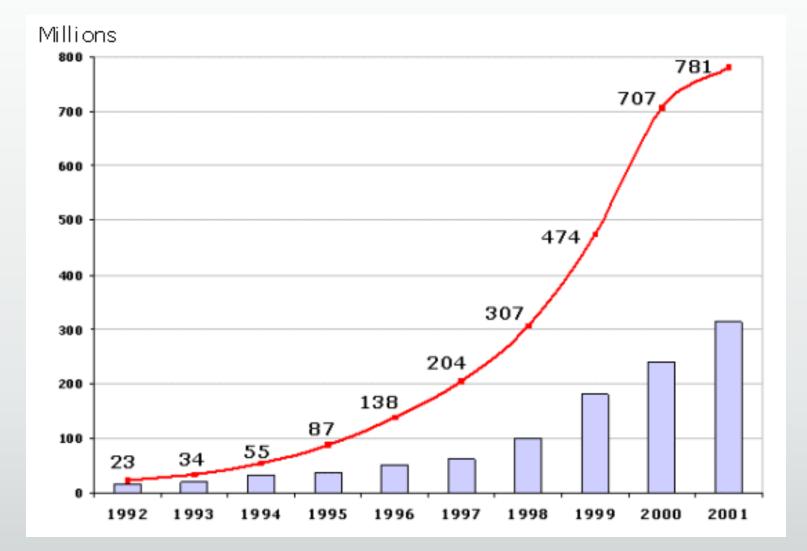
- 1999: ETSI Standardization finished for UMTS Release 1999 specifications both for FDD and TDD in Nice, France.
- Mar 1999: March 1999 ITU approves radio interfaces for third generation mobile systems
- 1999: World Radio Conference (WRC-99) handled spectrum and regulatory issues for advanced mobile communications applications in the context of IMT-2000
- June 2000: Telstra and Nortel complete first 3G CDMA2000 1X data transmission

History – Bluetooth on the Market

- 2000: The first certified Bluetooth products on the market
- Oct 2000: SK Telecom and LG Telecom (Korea) launch world's first 3G commercial services using CDM2000
- Mar 2001: 3GPP approves UMTS Release 4 specification in Palm Springs, CA.
- 2001: The latest Bluetooth protocol 1.1 is released.

History – 3G Progress

- 2001 Ericsson and Vodafone UK claim to have made the world's first WCDMA voice call over commercial network.
- Jun 2001: NTT DoCoMo launched a trial 3G service
- June 2001: CDMA2000 1xEV-DO recognized as part of the 3G IMT-2000 standard


History – 3G Commercial Services

- Aug 2001: 1 million commercial CDMA2000 1X subscribers
- Oct 2001 NTT DoCoMo launched the first commercial WCDMA 3G mobile network
- Nov 2001: Nokia and AT&T Wireless complete first live 3G EDGE call.
- Dec 2001: Telenor launched in Norway the first commercial UMTS network
- Jan 2002: Verizon Wireless (US) launches commercial CDMA2000 1X service

Future

- Jan 2002: Verizon Wireless (US) launches commercial CDMA2000 1X service
- Feb 2002: Nokia and Omnitel Vodafone claims to have made the first rich call in an end-toend All-IP mobile network at the 3GSM World Congress in Cannes, France.
- May 2002: 10 million commercial CDMA2000 1X subscribers
- Jun 2003: Target date for UMTS Release 6
- 2005: UMTS service will be world-wide

World Cellular Subscriber Growth

2G Technologies

	cdmaOne (IS-95)	GSM, DCS-1900	IS-54/IS-136 PDC
Uplink Frequencies (MHz)	824-849 (Cellular) 1850-1910 (US PCS)	890-915 MHz (Eurpe) 1850-1910 (US PCS)	800 MHz, 1500 Mhz (Japan) 1850-1910 (US PCS)
Downlink Frequencies	869-894 MHz (US Cellular) 1930-1990 MHz (US PCS)	935-960 (Europa) 1930-1990 (US PCS)	869-894 MHz (Cellular) 1930-1990 (US PCS) 800 MHz, 1500 MHz (Japan)
Deplexing	FDD	FDD	FDD
Multiple Access	CDMA	TDMA	TDMA
Modulation	BPSK with Quadrature Spreading	GMSK with BT=0.3	π/4 DQPSK
Carrier Seperation	1.25 MHz	200 KHz	30 KHz (IS-136) (25 KHz PDC)
Channel Data Rate	1.2288 Mchips/sec	270.833 Kbps	48.6 Kbps (IS-136) 42 Kbps (PDC)
Voice Channels per carrier	64	8	3
Speech Coding	CELP at 13Kbps EVRC at 8Kbps	RPE-LTP at 13 Kbps	VSELP at 7.95 Kbps

Cellular Networks

- First Generation
 - Analog Systems
 - Analog Modulation, mostly FM
 - AMPS
 - Voice Traffic
 - FDMA/FDD multiple access
- Second Generation (2G)
 - Digital Systems
 - Digital Modulation
 - Voice Traffic
 - TDMA/FDD and CDMA/FDD multiple access
- 2.5G
- Digital Systems
- Voice + Low-datarate Data
- Third Generation
 - Digital
 - Voice + High-datarate Data
 - Multimedia Transmission also

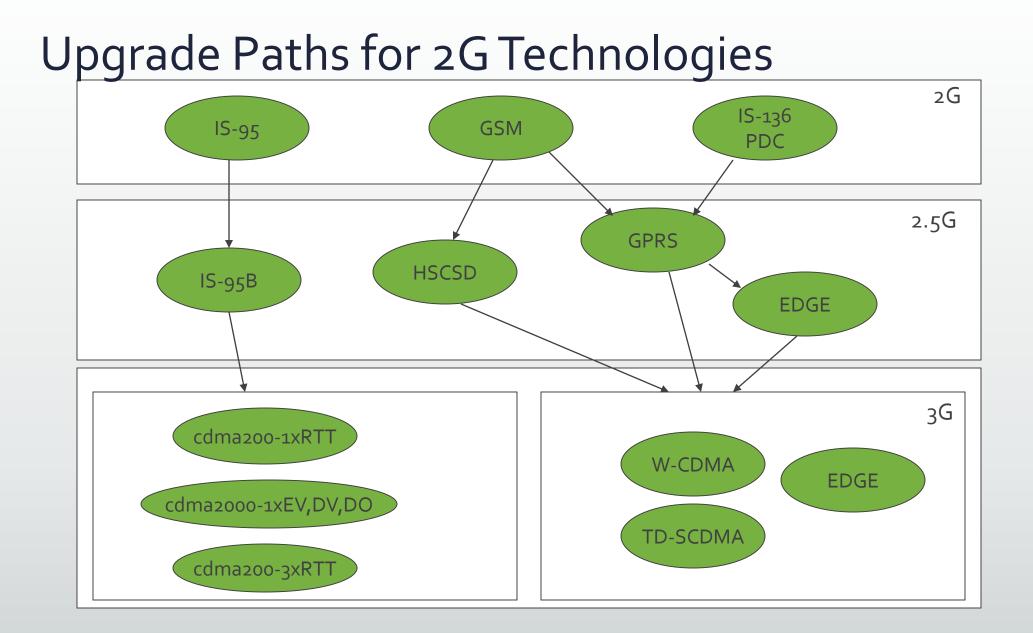
2G and Data

- 2G is developed for voice communications
- You can send data over 2G channels by using modem
- Provides a data rates in the order of ~9.6 Kbps
- Increased data rates are requires for internet application
- This requires evolution towards new systems: 2.5 G

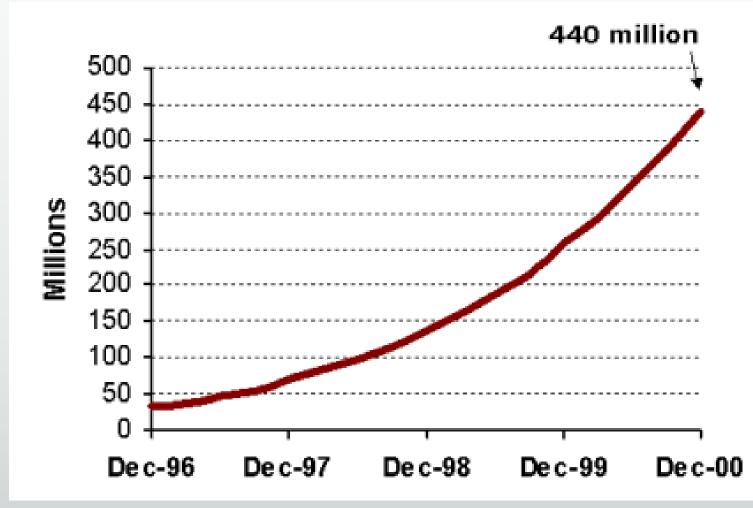
2.5 Technologies

- Evolution of TDMA Systems
 - GPRS for GSM and IS-136
 - Up to 171.2 Kbps data-rate
 - EDGE for 2.5G GSM and IS-136
 - Up to 384 Kbps data-rate
- Evolution of CDMA Systems
 - IS-95B
 - Up to 64 Kbps

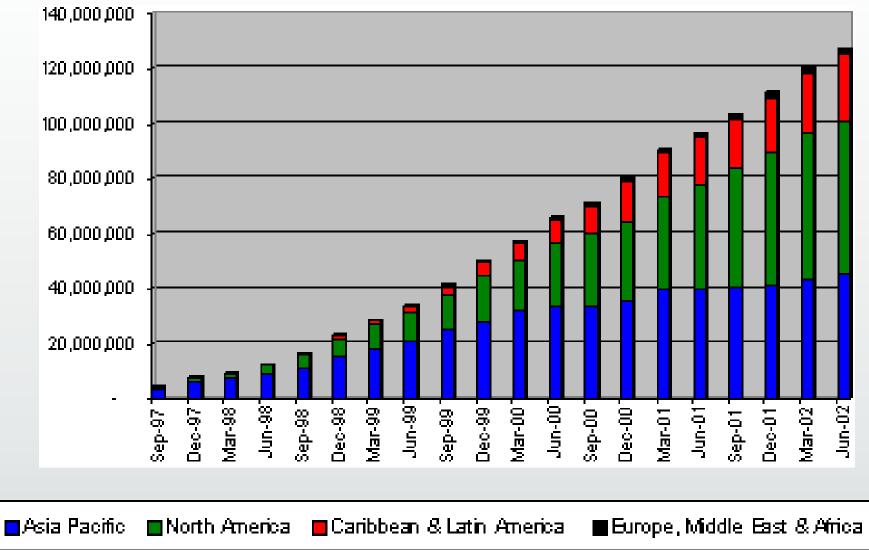
3G Systems

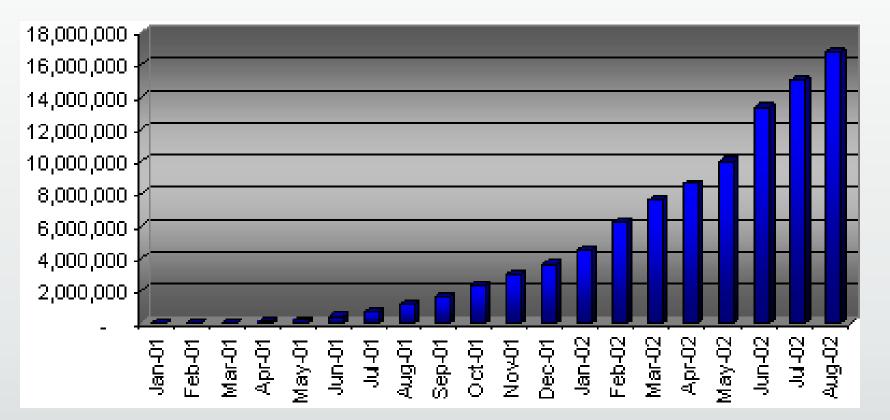

Goals

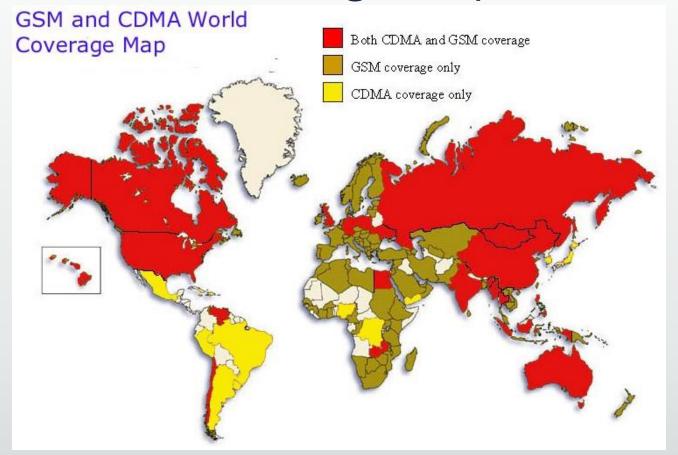
- Voice and Data Transmission
 - Simultanous voice and data access
- Multi-megabit Internet access
 - Interactive web sessions
- Voice-activated calls
- Multimedia Content
 - Live music

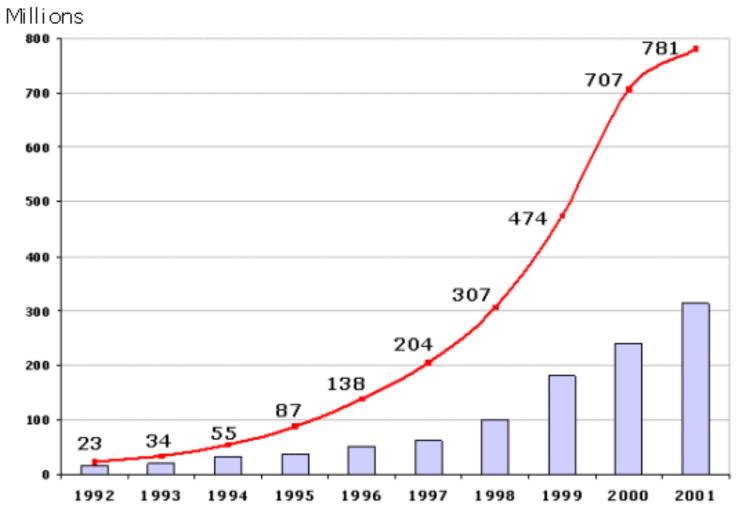

3G Systems

Evolution of Systems


- CDMA sysystem evallved to CDMA2000
 - CDMA2000-1xRTT: Upto 307 Kbps
 - CDMA2000-1xEV:
 - CDMA2000-1xEVDO: upto 2.4 Mbps
 - CDMA2000-1xEVDV: 144 Kbps datarate
- GSM, IS-136 and PDC evolved to W-CDMA (Wideband CDMA) (also called UMTS)
 - Up to 2.048 Mbps data-rates
 - Future systems 8Mbps
 - Expected to be fully deployed by 2010-2015
- New spectrum is allocated for these technologies


GSM Subscriber Growth


CDMA Subscriber Growth


CDMA2000 Subscriber Growth

GSM and CDMA Coverage Map Worldwide

World Cellular Subscriber Growth

2G Technologies

	cdmaOne (IS-95)	GSM, DCS-1900	IS-54/IS-136 PDC
Uplink Frequencies (MHz)	824-849 (Cellular) 1850-1910 (US PCS)	890-915 MHz (Eurpe) 1850-1910 (US PCS)	800 MHz, 1500 Mhz (Japan) 1850-1910 (US PCS)
Downlink Frequencies	869-894 MHz (US Cellular) 1930-1990 MHz (US PCS)	935-960 (Europa) 1930-1990 (US PCS)	869-894 MHz (Cellular) 1930-1990 (US PCS) 800 MHz, 1500 MHz (Japan)
Deplexing	FDD	FDD	FDD
Multiple Access	CDMA	TDMA	TDMA
Modulation	BPSK with Quadrature Spreading	GMSK with BT=0.3	π/4 DQPSK
Carrier Seperation	1.25 MHz	200 KHz	30 KHz (IS-136) (25 KHz PDC)
Channel Data Rate	1.2288 Mchips/sec	270.833 Kbps	48.6 Kbps (IS-136) 42 Kbps (PDC)
Voice Channels per carrier	64	8	3
Speech Coding	CELP at 13Kbps EVRC at 8Kbps	RPE-LTP at 13 Kbps	VSELP at 7.95 Kbps

2G and Data

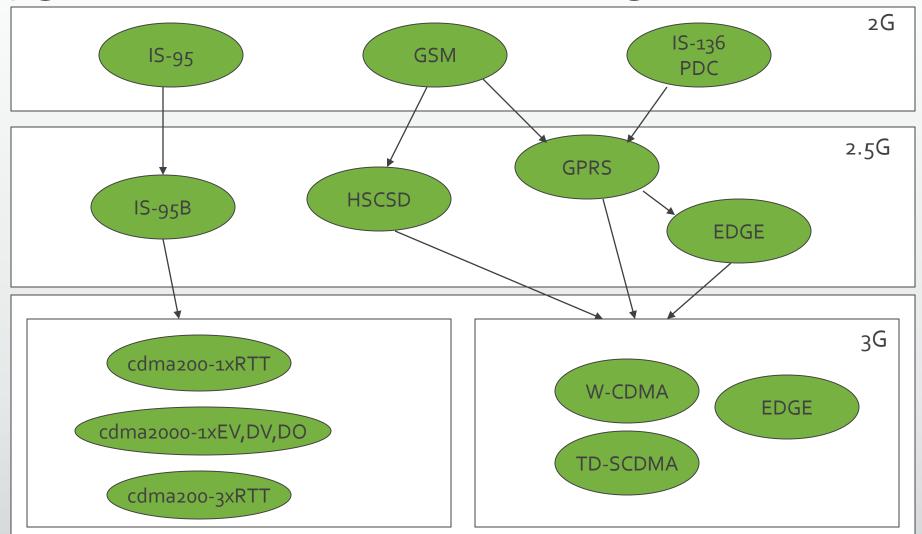
- 2G is developed for voice communications
- You can send data over 2G channels by using modem
- Provides adat rates in the order of ~9.6 Kbps
- Increased data rates are requires for internet application
- This requires evolution towards new systems: 2.5 G

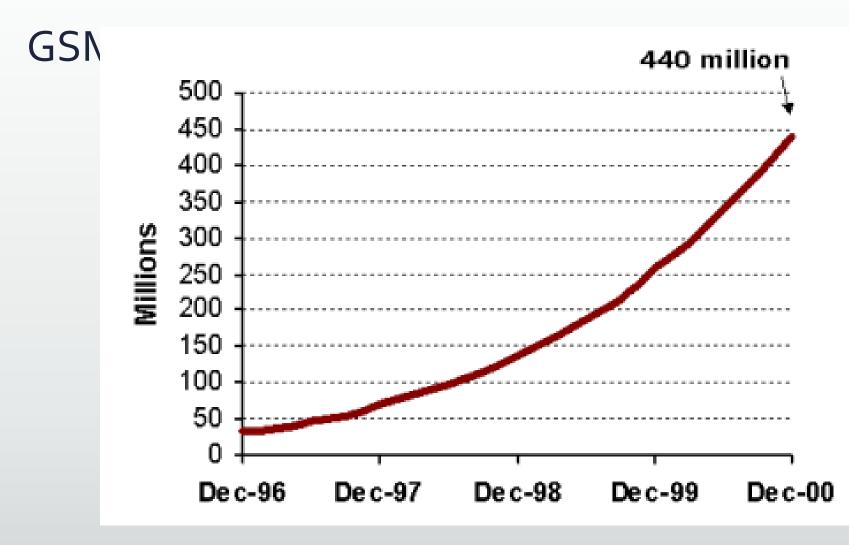
2.5 Technologies

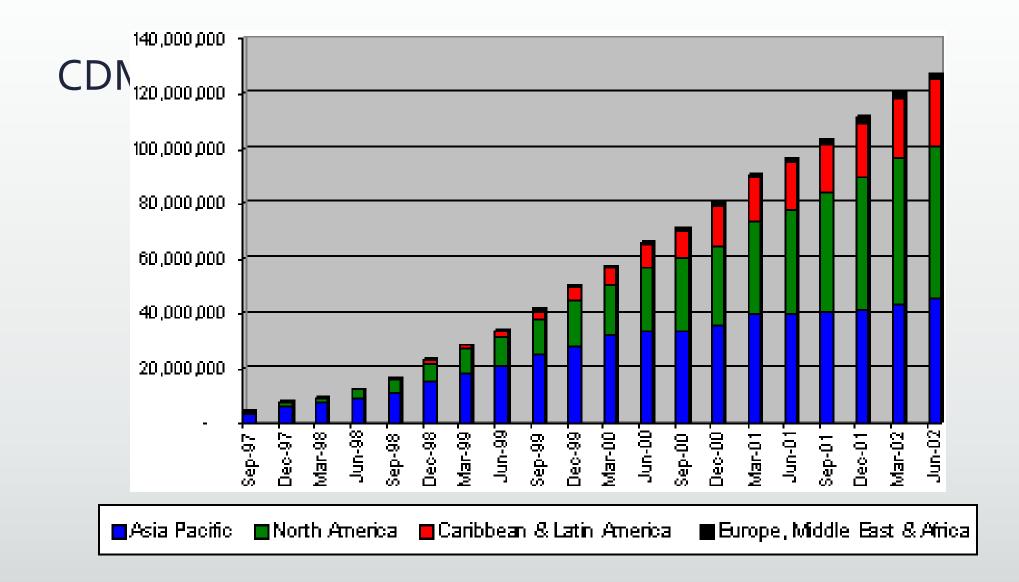
- Evolution of TDMA Systems
 - HSCSD for 2.5G GSM
 - Up to 57.6 Kbps data-rate
 - GPRS for GSM and IS-136
 - Up to 171.2 Kbps data-rate
 - EDGE for 2.5G GSM and IS-136
 - Up to 384 Kbps data-rate
- Evolution of CDMA Systems
 - IS-95B
 - Up to 64 Kbps

3G Systems

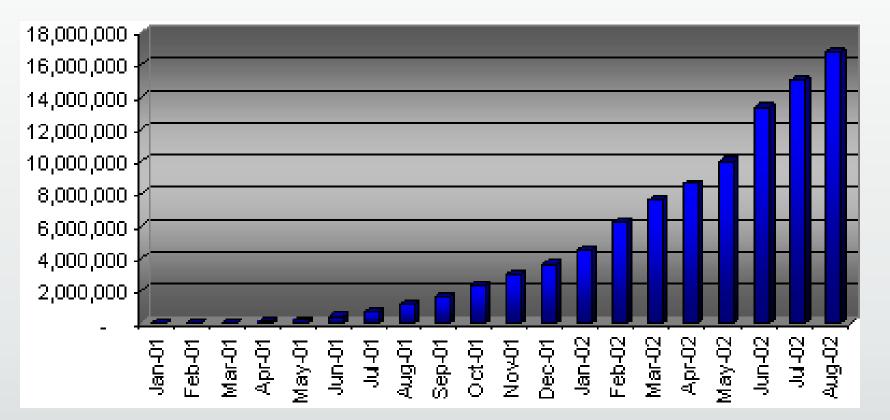
Goals

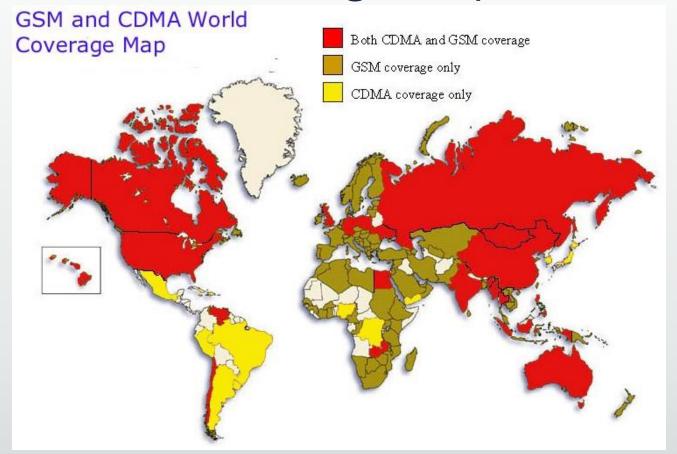

- Voice and Data Transmission
 - Simultanous voice and data access
- Multi-megabit Internet access
 - Interactive web sessions
- Voice-activated calls
- Multimedia Content
 - Live music


3G Systems


Evolution of Systems

- CDMA sysystem evallved to CDMA2000
 - CDMA2000-1xRTT: Upto 307 Kbps
 - CDMA2000-1xEV:
 - CDMA2000-1xEVDO: upto 2.4 Mbps
 - CDMA2000-1xEVDV: 144 Kbps datarate
- GSM, IS-136 and PDC evolved to W-CDMA (Wideband CDMA) (also called UMTS)
 - Up to 2.048 Mbps data-rates
 - Future systems 8Mbps
 - Expected to be fully deployed by 2010-2015
- New spectrum is allocated for these technologies


Upgrade Paths for 2G Technologies



CDMA2000 Subscriber Growth

GSM and CDMA Coverage Map Worldwide

