Transmission Line Input Impedance

Consider a lossless line, length ℓ, terminated with a load Z_{L}.

Let's determine the input impedance of this line!
Q: Just what do you mean by input impedance?
A: The input impedance is simply the line impedance seen at the beginning $(z=-\ell)$ of the transmission line, i.e.:

$$
Z_{\text {in }}=Z(z=-\ell)=\frac{V(z=-\ell)}{I(z=-\ell)}
$$

Note $Z_{\text {in }}$ equal to neither the load impedance Z_{L} nor the characteristic impedance Z_{0} !

$$
Z_{\text {in }} \neq Z_{L} \quad \text { and } \quad Z_{\text {in }} \neq Z_{0}
$$

To determine exactly what $Z_{\text {in }}$ is, we first must determine the voltage and current at the beginning of the transmission line ($z=-\ell$).

$$
\begin{aligned}
& V(z=-\ell)=V_{0}^{+}\left[e^{+j \beta \ell}+\Gamma_{0} e^{-j \beta \ell}\right] \\
& I(z=-\ell)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta \ell}-\Gamma_{0} e^{-j \beta \ell}\right]
\end{aligned}
$$

Therefore:

$$
Z_{i n}=\frac{V(z=-\ell)}{I(z=-\ell)}=Z_{0}\left(\frac{e^{+j \beta \ell}+\Gamma_{0} e^{-j \beta \ell}}{e^{+j \beta \ell}-\Gamma_{0} e^{-j \beta \ell}}\right)
$$

We can explicitly write $Z_{i n}$ in terms of load Z_{L} using the previously determined relationship:

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\Gamma_{0}
$$

Combining these two expressions, we get:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0} \frac{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}+\left(Z_{L}-Z_{0}\right) e^{-j \beta \ell}}{\left(Z_{L}+Z_{0}\right) e^{+j \beta \ell}-\left(Z_{L}-Z_{0}\right) e^{-j \beta l}} \\
& =Z_{0}\left(\frac{Z_{L}\left(e^{+j \beta \ell}+e^{-j \beta \ell}\right)+Z_{0}\left(e^{+j \beta \ell}-e^{-j \beta \ell}\right)}{Z_{L}\left(e^{+j \beta \ell}+e^{-j \beta \ell}\right)-Z_{0}\left(e^{+j \beta \ell}-e^{-j \beta \ell}\right)}\right)
\end{aligned}
$$

Now, recall Euler's equations:

$$
\begin{aligned}
& e^{+j \beta \ell}=\cos \beta \ell+j \sin \beta \ell \\
& e^{-j \beta \ell}=\cos \beta \ell-j \sin \beta \ell
\end{aligned}
$$

Using Euler's relationships, we can likewise write the input impedance without the complex exponentials:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{L} \tan \beta \ell}\right)
\end{aligned}
$$

Note that depending on the values of β, Z_{0} and ℓ, the input impedance can be radically different from the load impedance Z_{L} !

Special Cases

Now let's look at the $Z_{\text {in }}$ for some important load impedances and line lengths.
\rightarrow You should commit these results to memory!

1. $\ell=\lambda / 2$

If the length of the transmission line is exactly one-half wavelength $(~(l=\lambda / 2)$, we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \frac{\lambda}{2}=\pi
$$

meaning that:

$$
\cos \beta \ell=\cos \pi=-1 \quad \text { and } \quad \sin \beta \ell=\sin \pi=0
$$

and therefore:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(-1)+j Z_{L}(0)}{Z_{0}(-1)+j Z_{L}(0)}\right) \\
& =Z_{L}
\end{aligned}
$$

In other words, if the transmission line is precisely one-half wavelength long, the input impedance is equal to the load impedance, regardless of Z_{0} or β.

2. $\ell=\lambda / 4$

If the length of the transmission line is exactly one-quarter wavelength $(~ \ell=\lambda / 4)$, we find that:

$$
\beta \ell=\frac{2 \pi}{\lambda} \frac{\lambda}{4}=\frac{\pi}{2}
$$

meaning that:

$$
\cos \beta \ell=\cos \pi / 2=0 \quad \text { and } \quad \sin \beta \ell=\sin \pi / 2=1
$$

and therefore:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}(0)+j Z_{0}(1)}{Z_{0}(0)+j Z_{L}(1)}\right) \\
& =\frac{\left(Z_{0}\right)^{2}}{Z_{L}}
\end{aligned}
$$

In other words, if the transmission line is precisely one-quarter wavelength long, the input impedance is inversely proportional to the load impedance.

Think about what this means! Say the load impedance is a short circuit, such that $Z_{L}=0$. The input impedance at beginning of the $\lambda / 4$ transmission line is therefore:

$$
Z_{\text {in }}=\frac{\left(Z_{0}\right)^{2}}{Z_{L}}=\frac{\left(Z_{0}\right)^{2}}{0}=\infty
$$

$Z_{\text {in }}=\infty!$ This is an open circuit! The quarter-wave transmission line transforms a short-circuit into an open-circuit-and vice versa!

$$
Z_{i n}=\infty
$$

$$
Z_{0}, \beta
$$

3. $Z_{L}=Z_{0}$

If the load is numerically equal to the characteristic impedance of the transmission line (a real value), we find that the input impedance becomes:

$$
\begin{aligned}
Z_{i n} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{0} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{0} \sin \beta \ell}\right) \\
& =Z_{0}
\end{aligned}
$$

In other words, if the load impedance is equal to the transmission line characteristic impedance, the input impedance will be likewise be equal to Z_{0} regardless of the transmission line length ℓ.

4. $Z_{L}=j X_{L}$

If the load is purely reactive (i.e., the resistive component is zero), the input impedance is:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{j X_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j^{2} X_{L} \sin \beta \ell}\right) \\
& =j Z_{0}\left(\frac{X_{L} \cos \beta \ell+Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell-X_{L} \sin \beta \ell}\right)
\end{aligned}
$$

In other words, if the load is purely reactive, then the input impedance will likewise be purely reactive, regardless of the line length ℓ.

Note that the opposite is not true: even if the load is purely resistive $\left(Z_{L}=R\right)$, the input impedance will be complex (both resistive and reactive components).

Q: Why is this?

A:

